
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. PREPRINT VERSION. JANUARY, 2026 1

Towards Generalist Neural Motion Planners for Robotic
Manipulators: Challenges and Opportunities

Davood Soleymanzadeh1, Ivan Lopez-Sanchez2, Hao Su2, Yunzhu Li3, Xiao Liang4, and Minghui Zheng1

Abstract— State-of-the-art generalist manipulation policies
have enabled the deployment of robotic manipulators in unstruc-
tured human environments. However, these frameworks struggle
in cluttered environments primarily because they utilize auxiliary
modules for low-level motion planning and control. Motion
planning remains challenging due to the high dimensionality of
the robot’s configuration space and the presence of workspace
obstacles. Neural motion planners have enhanced motion plan-
ning efficiency by offering fast inference and effectively handling
the inherent multi-modality of the motion planning problem.
Despite such benefits, current neural motion planners often
struggle to generalize to unseen, out-of-distribution planning
settings. This paper reviews and analyzes the state-of-the-art
neural motion planners, highlighting both their benefits and
limitations. It also outlines a path toward establishing generalist
neural motion planners capable of handling domain-specific
challenges. For a list of the reviewed papers, please refer to
https://davoodsz.github.io/planning-manip-survey.github.io/.

Note to Practitioners— The paper reviews and summarizes
rapidly evolving studies that leverage deep learning for motion
planning of robotic manipulators. As robotic manipulators con-
tinue to transition from controlled laboratory environments to
real-world settings, the demand for efficient, robust, and adapt-
able motion planning algorithms grows significantly. Thanks
to characteristics such as fast inference time and inherent
inductive bias, deep learning has been leveraged to facilitate
this transition. This paper extensively reviews state-of-the-art
deep learning methods used for motion planning of robotic
manipulators, and outlines promising avenues and challenges
for future research. It specifically evaluates and summarizes the
performance of the most commonly used deep learning methods
on various key components of motion planning, such as informed
sampling, warm-starting trajectory optimization, and collision
checking. This paper can serve as a resource for both experts
and newcomers in high-DoF robotic motion planning using deep
learning.

Index Terms—Robotic Manipulators, Motion Planning, Neural
Motion Planners, Generalist Neural Motion Planners, Deep
Learning
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Fig. 1: Deep learning for robotic manipulator motion planning.
(a, b) Point cloud networks (PCNets) for End-to-end (E2E)
planning [1], [2] (Section V-A). (c) Variational autoencoders
(VAEs) [3], and (d) normalizing flows [4] for informed sam-
pling (Section V-C). (e) Multilayer perceptions (MLPs) for
trajectory optimization [5] (Section V-D). (f) Convolutional
neural networks (CNNs) for E2E planning [6] (Section V-A).
(g) Generative adversarial networks (GANs) for constraint
manifold learning [7] (Section V-C). (h) MLPs for trajectory
optimization [8] (Section V-D). (i) Graph neural networks
(GNNs) for collision checking [9] (Section V-E). (j) MLPs
for steering [10] (Section V-B2). (k) VAEs for trajectory opti-
mization [11] (Section V-D). (l) CNNs for collision checking
[12] (Section V-E).

I. INTRODUCTION

THE emergence of robotics for humans and society [13],
has positioned robotic manipulators as fundamental el-

ements across various applications, such as the evolution
of medical services [14], and manufacturing settings [15],
[16]. A ubiquitous challenge in the deployment of robotic
manipulators is planning motions for seamless operation in
dynamic, cluttered environments [15], [17], [18].
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Section II
Workspace vs. Configuration space

Section III
Classical Planning Algorithms
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Section IV
Deep Learning Modules

Section V
Deep Learning-based Planning
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Fig. 2: Overview of this survey paper. Figures are adopted from Carvalho et al. [19], Qureshi et al. [20], Bency et al. [21],
and Song et al. [22]

Planning for a robotic system involves finding a feasible
collision-free path between a pre-defined start and goal within
its configuration space. For robotic manipulators, the process
is difficult due to high dimensionality and expensive collision
checking. Robotic manipulators that operate in dynamic ev-
eryday environments need fast planning algorithms. Classical
planning algorithms are often slow, computationally expen-
sive, and require extensive knowledge about the manipula-
tor’s environment and its operational capabilities [23], [24].
Deep learning methods have been leveraged to address these
challenges by encoding the underlying similarities between
planning problems for efficient planning, thanks to their fast
inference, and ease of implementation [25].

Deep learning techniques have significantly enhanced var-
ious components of the manipulator’s autonomy stack [26].
Figure 3 demonstrates various components of the manipula-
tor’s autonomy stack. Deep learning methods for vision [27]
and language processing [28] have been utilized to convert
high-dimensional environmental sensory data (e.g., images,
videos, voices, texts) into low-dimensional interpretable em-
beddings [29]. Furthermore, deep learning methods have been
leveraged for task specifications, transforming high-level input
instructions to low-level sequences of actions that robotic ma-
nipulators can execute while imposing temporal specifications
[30]. Additionally, deep learning methods have been efficiently
utilized to solve the inverse kinematics problem for redundant
robotic manipulators [31].

Deep learning methods have also enhanced the motion
planning sub-stack, either by improving specific components
of classical motion planners or by functioning as end-to-end
planners [18], [24], as illustrated in Figure 1. Despite vast
utilization, there are challenges associated with the utilization
of deep learning methods for manipulator motion planning.
These challenges include:

• Data scarcity: The first step in training and utilizing deep
learning methods is dataset collection. Although founda-

tion models [33] are pre-trained on internet-scale datasets,
they are not suitable for the motion planning sub-stack. In
the literature, almost all the deep learning models utilized
for planning are trained on limited datasets specifically
gathered for that specific problem [24]. Creating internet-
scale datasets for low-level planning poses significant
challenges, including the need for high-fidelity physics
simulators for large-scale data generation.

• Generalization: The main drawback of deep learning
tools is their excellent performance on in-distribution
problems during inference time, while struggling to gen-
eralize to out-of-distribution problems. This limitation is
particularly pronounced in planning due to the inher-
ent discontinuities in the planning problem [34]. Small
changes in the planning problem (workspace) can lead
to significant changes in configuration space that were
not present in the training dataset [35]. Addressing these
challenges is crucial for the efficient utilization of deep
learning methods in motion planning.

• Real-time applications: Although more complex deep
learning methods and deeper networks may excel at
encoding complex similarities within planning problems,
the relatively slow inference time of these models limits
their deployment in real-world dynamic environments
[36]. Further research is required to reduce the inference
time of these planners for real-time deployment.

• Safety guarantees: It is challenging to analytically en-
sure the safety and stability of deep learning models. Ad-
ditional considerations and constraints should be included
to guarantee the required safety criteria [37]. Rigorously
checking for the safety and stability of these methods is
challenging and requires further exploration.

In this survey paper, we explored the state-of-the-art lit-
erature on the utilization of deep learning methods in robotic
manipulator motion planning. We identified current challenges
and provided future perspectives and research directions to
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TABLE I: Overview of existing survey papers on robotic motion planning, their scope, focus, and limitations compared to this
paper.

Reference Robot Types Scope and Focus Notes
Wang et al.,
2021 [24]

Not specific to
manipulators

Machine learning for improving/replacing
classical planning algorithms

Up to 2021

McMahon et
al., 2022 [18]

Not specific to
manipulators

Machine learning for improving classical
sampling-based planning algorithms

Not covering other planning
algorithms

Noroozi et
al., 2023 [23]

Not specific to
manipulators

All types of planning algorithms (including both
classical and learning-based)

Not specific to deep learning

Tamizi et al.,
2023 [15]

Robotic
manipulators

All types of planning algorithms (classical,
learning-based)

Not specific to deep learning

Carvalho et
al., 2025 [32]

Not specific to
manipulators

Data-driven planning algorithms Not specific to robotic
manipulators

Ours Robotic
manipulators

Focused on deep learning for
improving/replacing classical planning
algorithms

Since 2018

Note: The main criteria for selecting recent survey papers were twofold. First, the survey needed to contain planning for robotic manipulators.
Second, it had to consider recent papers that utilize deep learning methods for planning.

address these challenges accordingly. Table I lists related
survey papers on robotic motion planning. In comparison
with these papers, our focus is to provide the promises and
limitations of using deep learning methods to enhance classical
motion planning algorithms for robotic manipulators.

Our criteria for paper selection are as follows. (1) We
focused on the-state-of-the-art literatures that utilize deep
learning for robotic manipulator planning since 2018; (2)
We focused solely on papers that apply deep learning to
enhance global planning algorithms. (3) We excluded papers
that utilize deep learning for task planning within task and
motion planning (TAMP) scenarios and papers that utilize deep
learning for low-level motion control of robotic manipulators.
(4) We also surveyed classical planning algorithms-related
research papers to identify their components that can be
enhanced by deep learning methods.

The key contributions of this survey paper are as follows:

• Robotic manipulator motion planning: We review the
state-of-the-art literature that has utilized deep learn-
ing for robotic manipulator planning. Robotic manipu-
lators are increasingly deployed within critical applica-
tions (e.g., healthcare, re-manufacturing, and agriculture),
which necessitate safe and efficient motion planning
algorithms. However, motion planning for robotic manip-
ulators remains challenging due to their high DOF and
the complexity of real-world environments.

• Systematic mapping from deep learning frameworks
to motion planning algorithmic primitives: We pro-
vide a systematic mapping from various deep learning
architectures (e.g., convolutional neural networks, deep
generative models, large language models) to core algo-
rithmic primitives of classical motion planning algorithms
(e.g., sampling and steering primitives of sampling-based
planning algorithms).

• Road to generalist neural motion planners: We out-
line a path toward generalist neural motion planners
capable of end-to-end planning for robotic manipulators.
We summarize the progress that has been made in this

direction, identify how far the research community has
advanced, and highlight key considerations necessary to
achieve this goal. Particularly, we emphasize the need for
standardized benchmarks, large-scale planning datasets,
explicit handling of safety constraints, generalization to
out-of-distribution scenarios, and robustness to planning
uncertainties for reliable deployment within unstructured
real-world environments. Additionally, we discuss how
large-scale foundation models can be established and
leveraged to facilitate traversing this path.

Given the recent advances in computational power and the
emergence of new deep-learning methods, we believe it is
essential to revisit the recent applications of these methods
in motion planning for robotic manipulators. This paper can
provide a unified, comprehensive overview of the challenges
and promises of utilizing deep learning methods for robotic
manipulator motion planning.
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Fig. 3: An example of a robotic manipulator’s autonomy stack.

This survey paper is organized as follows. Section II defines
the planning preliminaries for robotic manipulators, explain-
ing foundational concepts essential to the planning problem.
Section III reviews classical planning algorithms widely used
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TABLE II: Robotic manipulator planning terminologies, and their definitions used in this manuscript.

Term Definition
Configuration space An N-dimensional space spanned by robotic manipulator joint values, where N is the number of DOF.
Workspace The 3-dimensional space in which the robotic manipulator’s end-effector operates.
Planning constraints Include geometric constraints; kinematic constraints; and dynamic constraints.
Global planning Planning algorithms that first plan a path from a start to a goal configuration, and then execute it.

Goal

Start

Workspace

0
0

Start

Goal

Configuration Space

Fig. 4: An example of a 2-DOF planar manipulator: workspace
vs. configuration space [39].

for robotic manipulators, summarizing their strengths and lim-
itations. Section IV introduces various deep learning methods
and their potential application for robotic manipulator motion
planning. Section V reviews the state-of-the-art literature on
neural motion planners for robotic manipulators. Section VI
outlines the current challenges and presents future perspectives
associated with the application of neural motion planners.
Section VII provides domain-specific challenges and neces-
sary considerations for effective deployment of neural motion
planners. Finally, section VIII summarizes our findings and
conclusions based on the reviewed works. Figure 2 illustrates
the structure of the survey paper.

II. ROBOTIC MANIPULATORS PLANNING PRELIMINARIES

In this section, we introduce commonly used terminologies
and planning problems for robotic manipulators. Table II
provides robotic manipulators’ planning terminologies and
their definitions used in this paper, and Table III summarizes
the mathematical notations used throughout this section.

TABLE III: Mathematical notations and definitions for motion
planning of robotic manipulators utilized throughout this pa-
per.

Symbol Definition Symbol Definition
C Configuration space Cfree Free configuration space
Cobs Obstacle configuration space X Workspace
Xfree Free workspace Xobs Obstacle workspace
q Configuration x Workspace pose
f(.) Forward kinematics qinit Initial configuration
qgoal Goal configuration σ Path
c(.) Planning cost τ Trajectory

A. Terminologies

Common terms and terminologies related to planning for
robotic manipulators [38] are as follows. Figure 4 illustrates
these terms for a 2-DOF robotic manipulator.

Configuration Space: The configuration of a robotic ma-
nipulator is defined by its joint values, represented as q =
(q1, ..., qN ) where N is the number of DOF of the manipulator
[40]. The configuration space (C) is an N -dimensional space
spanned by these joint values, which describe the manipu-
lator’s configuration. Using configuration space simplifies the
planning problem, as the manipulator is represented by a point
(instead of bodies and volumes), and obstacles are represented
as forbidden regions (Cobs) in this space. The planning problem
is then reduced to moving the point representing the manipu-
lator’s configuration from the initial configuration to the goal
configuration while avoiding the forbidden regions (i.e., stay-
ing within the free space Cfree = C\Cobs). However, comput-
ing these forbidden regions is nontrivial: inverse kinematics for
high-DOF (especially redundant) manipulators generally lacks
closed-form solutions except for special kinematic structures,
and the exact boundary separating Cobs from Cfree is typically
high-dimensional and nonconvex, with no simple closed-form
representation [41].

Workspace: The workspace X is the space in which a manip-
ulator’s end-effector operates. In this space, the end-effector
position is specified by Cartesian coordinates in R3, while
its orientation is represented by the rotation group SO(3)
(X ∈ R3 × SO(3)).

Forward & Inverse Kinematics: These operations enable
mapping between the joint configuration and the Cartesian
pose of all geometries attached to the manipulator. Forward
kinematics (f ) maps a configuration (q) from the configuration
space to a workspace pose (x), i.e., x = f(q). Conversely,
inverse kinematics maps a pose (x) from the workspace (X )
back to a configuration (q) in the configuration space (C). i.e.,
q = f−1(x).

B. Planning Definitions

Various approaches that have been utilized to solve the
planning problem are as follows. Refer to Table IV for an
overview of the characteristics of these approaches. This Table
highlights key characteristics and differences among various
planning methods for robotic manipulators.

Path Planning: The path planning problem can be defined as
M = {qinit,qgoal, Cfree} where qinit, and qgoal represent
initial and goal configurations, respectively. The objective
of path planning is to find a feasible path connecting the
start and the goal configurations that lies entirely within
the free space. The primary goal is to find a feasible path
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TABLE IV: Three main approaches to solve the planning
problem for robotic manipulators, their distinguishing char-
acteristics.

Geometric
constraints

Kinematics
constraints

Dynamic
constraints

Velocity
evolution

Path
planning

✓ ✗ ✗ ✗

Motion
planning

✓ ✓ ✓ ✗

Trajectory
planning

✓ ✓ ✓ ✓

Note: In this manuscript, we use the term motion planning to broadly describe
low-level planning within the robotic manipulation stack. Low-level planning
can be further categorized into path planning, motion planning, and trajectory
planning, each with distinct meanings, although these terms are often used
interchangeably in the literature.

σ = [q1, ...,qt, ...,qT ] such that:

σ(0) = qinit,

σ(t) ∈ Cfree,

σ(T ) = qgoal,

(1)

where the primary constraints for path planning are geometric
constraints. Therefore, path planning provides a geometric
description of the robotic manipulator’s movement by gen-
erating collision-free waypoints between the start and goal
configurations.

Motion Planning: Path planning, as defined in Eq. 1, fo-
cuses solely on geometric constraints. However, for effective
planning, other types of constraints must also be considered,
including kinematic constraints, dynamic constraints, and the
robotic manipulator’s evolution over time [38]. The motion
planning problem incorporates all these constraints.

To address the motion planning problem, a set of costs ci
are considered. These costs include all constraints - geometric,
kinematic, and dynamic - as soft constraints (i.e., costs to be
optimized). The motion planning problem can be defined as
follows:

σ∗ = argmin
σ

∑
i

λici(σ), (2)

where λi > 0 is a hyperparameter weight assigned to each
cost function ci(σ), and σ and σ∗ are the planned and optimal
motion, respectively. Therefore, motion planning generates a
collision-free path between the start and goal configuration
while satisfying kinematics and dynamics constraints.

Trajectory Planning: In the literature, the motion planning
problem and the trajectory planning problem are often treated
as synonyms. However, from a technical perspective, trajectory
planning differs in that it also considers the time evolution of
velocity as part of the trajectory [38]. Let s = [qT , q̇T ]T ∈
R2d represent the state of the robotic manipulator, where q
is the robotic manipulator configuration, and q̇ is the velocity
of robotic manipulator. A Trajectory τ = [s1, ..., st, ..., sT ] is
defined as a sequence of states over a time horizon T . The
trajectory planning problem can be defined as follows [42]:

τ∗ = argmin
τ

∑
i

λici(τ). (3)

The main difference between the motion planning problem
(Eq. 2) and the trajectory planning problem (Eq. 3) lies in the
inclusion of the robotic manipulator velocity evolution into the
problem formulation. Therefore, trajectory planning generates
a collision-free path between the start and goal configuration
while satisfying kinematics and dynamics constraints, and
includes the evolution of robotic manipulator velocity.

C. Metrics

The common metrics to evaluate the performance of plan-
ning algorithms for robotic manipulators are: planning time,
planning cost, and success rate.

• Planning Time: Planning time (T ) is the average planning
time the planner takes to find a solution.

• Planning Cost: Planning cost (C) refers to the average
length of the planned paths in the configuration space or
the workspace.

• Success Rate: Success rate (S) represents the percentage
of successfully planned paths.

III. CLASSICAL PLANNING ALGORITHMS

In this section, we introduce classical motion planning
algorithms for robotic manipulators. Over the years, a diverse
array of algorithms has been developed to address the planning
problem. These algorithms are broadly categorized into two
groups: sampling-based, and optimization-based algorithms.

A. Sampling-based Planning Algorithms

Sampling-based planning algorithms utilize random sam-
pling to create a tree or roadmap within the configuration
space [43], and are broadly categorized into unconstrained and
constrained algorithms.

1) Unconstrained Planning: Sampling-based motion plan-
ners can be divided into two main categories: multi-query
probabilistic roadmaps (graph-based planners) [44]–[48], [68],
and single-query rapidly-exploring random trees (tree-based
planners) [49]–[61]. Table V summarizes representative plan-
ners from each category with their primitives and limitations.

Probabilistic Roadmaps (PRMs): PRMs [44] operates in
two phases: graph construction and path-finding. During the
graph construction phase, the algorithm randomly generates
samples in the robotic manipulator’s configuration space and
adds them as a new node to the graph. Then the algorithm tries
to connect the new node to the existing nodes of the graph
using a specific distance metric and collision avoidance. This
process will create a graph in the free configuration space
(Cfree). In the path-finding phase, the algorithm inserts the
start and goal configurations of the planning problem into the
constructed graph and uses graph search algorithms to find a
path connecting these two nodes.

Tree-based Planners: In the context of probabilistic
roadmaps, “multi-query” means that the graph constructed
during the first phase can be used for various start and goal
configurations to solve different path planning problems. This
also can be achieved by simply solving a series of “single-
query” problems for different start and goal configurations
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TABLE V: The two main categories of sampling-based planning algorithms for motion planning of robotic manipulators, their
advanced variants, algorithmic primitives, and limitations.

Category Basic
Algorithm

Variants Algorithmic
Primitives

Limitations

Graph-based
(multi-query)

PRM [44] LazyPRM [45], PRM* [46], LazyPRM* [46], SPARS
[47], Improved SPARS [48].

• Graph Construction
• Path Finding

• Computationally complex graph
construction.

Tree-based
(single-query)

RRT [49] Connect-RRT [50], RRT* [46], LBT-RRT [51],
Stable-sparse RRT [52], Transition-based RRT [53],
Lazy-RRG* [54], Quotient-space RRT (QRRT) [55],
Quotient-space RRT* (QRRT*) [56], RRT# [57],
RRTX [58], P-RRT* [59], [60], Informed-RRT* [61],
FMT* [62], BFMT* [63], Hierarchical FMT* [64],
BIT* [65], ABIT* [66], AIT* [67].

• Sampling
• Local Planning
• Collision Checking

• Struggle to scale up to high-dimensional
configuration spaces.
• Non-smooth paths
• Low convergence rate
• Hardly applicable to dynamic environments
• Inefficient sampling primitive

[46]. In “single-query” planners, a tree is incrementally built
from the start configuration to the goal configuration, which
reduces the planning time compared to “multi-query” plan-
ners. This results in a widespread application of single-query
planners compared to probabilistic roadmaps.

Tree-based planners, such as Rapidly-exploring Random
Tree (RRT) algorithm [49], have three algorithmic primi-
tives: First, random sampling within the configuration space
(Sampling). Second, steering from existing sampled config-
urations to the new sample (Local Planning). Third, colli-
sion checking the steering connections (Collision Checking).
Figure 5 illustrates the algorithmic primitives of sampling-
based planning algorithms. These algorithmic steps enable an
implicit representation of the configuration space, making tree-
based planners an effective choice for path-planning problems
within the high-dimensional configuration space of robotic
manipulators.

II. Steering
(III. Collision-free)

II. Steering
(III. In-collision)

I. Sampling

I. Sampling

Fig. 5: Algorithmic primitives (I. Sampling, II. Steering, and
III. Collision Checking) of sampling-based planning algo-
rithms.

Sampling-based Planning Algorithms Variants and Ex-
tensions: Given that basic sampling-based planning algo-
rithms are effective in finding the feasible path within high-
dimensional configuration spaces due to its probabilistic com-
pleteness, several variants and extensions of the sampling-
based planning algorithms have been developed to further en-
hance their performance. Some of the variants and extensions
are as follows:

• Informed sampling: Sampling functions in sampling-
based planners can be either random sampling or in-
formed sampling. Random sampling functions indiscrim-

inately select points from the entire configuration space
to construct the tree. In contrast, informed sampling func-
tions adaptively sample the configuration space. Informed
samplers commonly utilize hand-crafted heuristics to
direct the sampling process towards configuration space
regions with high success rates and low planning costs
[61].

• Lazy collision checking: This technique performs col-
lision checking in the path construction phase, rather
than during the initial graph or tree construction stage
of the path planning algorithm. By postponing collision
checking, the algorithm can focus on rapidly generating
a graph or tree structure without being overwhelmed
by the computational overhead of immediate collision
evaluations [45], [54].

• Bi-directionality: In this module, two sampling-based
planners are developed simultaneously: one starts from
the start node, and the other from the goal node. This
module enhances the efficiency of the path planning algo-
rithm by concurrently expanding these planners towards
each other [50].

• Optimality: This module makes it possible for the
sampling-based planner to find an asymptotically optimal
path by utilizing tree rewiring operations after each sam-
pling iteration. The rewiring process continually looks for
ways to reduce the overall path length, which eventually
leads to an asymptotically optimal solution [46].

Advanced Variants: There are several families of sampling-
based planning algorithms that extend beyond the basic
framework of probabilistic roadmaps and tree-based planners.
The first family is Fast Marching Tree (FMT*) algorithms
[62]–[64]. These algorithms combine features of both PRM
and RRT algorithms by using a lazy dynamic programming
approach on samples to grow a tree of paths. The FMT*
algorithm leverages the strength of both PRM and RRT
by incorporating elements of PRM’s multi-query and RRT’s
single-query approach. Another family is Batch Informed
Trees (BIT*) algorithms [65]–[67], [69]. The BIT* algorithm
combines search-based planners (e.g., A* [70]), and sampling-
based planners (e.g., RRT* [46]) to approximate and search the
configuration space. The BIT* algorithm efficiently explores
the configuration space by prioritizing regions with a higher
probability of containing an optimal path.
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Summary: Sampling-based planning algorithms, have three
algorithmic primitives, sampling, steering, and collision check-
ing.

• Sampling: There are two types of sampling functions in
sampling-based planners: uniform sampling and informed
sampling. Uniform sampling indiscriminately samples
from the configuration space, leading to computational
complexity. Informed sampling functions sample within
promising areas of the configuration space to reduce
computational complexity. Classical planners commonly
use hand-crafted heuristics for this purpose, which is
challenging to implement for robotic manipulators. In
Section V-B1 we explore how various deep learning
frameworks can improve this part of sampling-based
planning algorithms for robotic manipulators.

• Steering: Classical sampling-based algorithms steer to-
ward newly sampled configurations using straight-line
paths, which can violate motion constraints of robotic
manipulators. Recently, deep learning frameworks have
been employed to learn efficient steering functions to
improve sampling-based planning algorithms (Section
V-B2).

• Collision Checking: Classical sampling-based algo-
rithms perform fine-grained geometric collision queries
to validate each edge of the constructed tree, which is
computationally intensive. Recently, deep learning frame-
works have been utilized as proxy collision checkers to
enable efficient, continuous collision checking (Section
V-E).

2) Constrained Planning: Geometric task constraints, such
as maintaining a certain pose for a robotic manipulator end-
effector, are types of constraints that require modifications
to the sampling-based planning algorithms [71]. These con-
straints are prevalent in real-world applications of robotic ma-
nipulators, which require modified sampling-based planning
algorithms.

Definition: In constrained planning, the planner must not
only avoid collisions but also satisfy hard geometric task
constraints. Thus, the constrained planning problem involves
finding a path between any specified initial and goal configu-
ration that lies entirely within the union of free configuration
space and constraint manifold.

There are several methods to incorporate constraint ad-
herence within sampling-based planning algorithms. The first
approach is projection, where a projection operator is utilized
to project a given configuration onto the constraint manifold
[72], [73]. Another method involves tangent spaces, which
calculate the tangent space of the constraint manifold, allowing
for generation of nearby samples [74]. These tangent spaces
can be stored and integrated into an atlas, providing a linear
piecewise approximation of the constraint manifold [75]. For
more details on constrained sampling-based planning, refer to
the survey paper by Kingston et al. [76].

Summary: Classical constrained sampling-based planning
algorithms utilize projection and continuation operators to
enforce kinematic constraints. Recently, deep learning frame-

works have been employed to learn the constraint manifold
for direct constraint-aware sampling (Section V-C).

3) Limitations of Sampling-based Planning Algorithms:
Although sampling-based motion planners are widely used for
robotic manipulators’ path planning, they come with several
limitations and drawbacks, including:

• Curse of dimensionality: The number of samples for
path planning may increase exponentially with the dimen-
sion of the configuration space. Sometimes the sampling-
based planners need to cover the configuration space with
discrete samples.

• Path smoothness: The output of sampling-based planners
often contains many unnecessary nodes which result
in jerky motions, and takes longer to execute. The
probabilistic nature of sampling-based planners results
in paths with unnecessary motions and discontinuities,
which necessitate post-processing steps to improve the
quality of the generated path. For more details, refer to
Section III-B.

• Low convergence rate: Sampling-based planning algo-
rithms demonstrate low convergence rates in the high-
dimensional environment, due to random sampling.

• Hardly applicable to dynamic environments: Planning
in dynamic environments necessitates regular re-planning
for collision avoidance [77]. The sampling-based motion
planning approaches incur a significant computational
cost, rendering them unsuitable for real-time computation
and reactive motion planning.

• Sample inefficiency: Due to the sampling primitives of
these algorithms, these planners often struggle to provide
enough samples in important areas within the configu-
ration space (e.g., near obstacles and in narrow spaces).
This reduces their capability to model the configuration
space [78] explicitly. In highly complex workspaces and
narrow passages, these algorithms may reach a singularity
such that the constructed graph becomes disconnected
and planning fails.

B. Optimization-based Planning Algorithms

Sampling-based planners are effective and fast for path
planning in high-dimensional configuration spaces. However,
these planners can not guarantee the smoothness and local
optimality of the planned path. Optimization-based planners
address these drawbacks by post-processing the planned path
to eliminate redundant or jerky motions [79]. There are two
primary methods for this post-processing: gradient-free and
gradient-based optimization methods [17]. Table VI summa-
rizes trajectory optimization planners with their characteristics
and limitations.

Gradient-free Optimization Methods: A family of gradient-
free methods aims to shorten the path by removing redundant
nodes. These methods typically employ (partial) short-cutting
[44], [80], [81], which involves tree pruning, or hybridization
[82]. Another family focuses on smoothing the path by utiliz-
ing smooth curves to interpolate between the path’s waypoints.
Techniques such as B-splines [83], Bezier curves [84], and
cubic polynomials [85] are commonly utilized for this purpose.
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TABLE VI: The two main categories of trajectory optimization planning algorithms for robotic manipulators, their constituent
algorithms, characteristics, and limitations.

Category Algorithms Characteristics Limitations

Gradient-free Short-cutting [44], [80], [81], Path Smoothing by
Utilizing Smooth Curves (i.e., B-splines [83], Bezier
Curves [84], Cubic Polynomials [85]

• Post-processing the output of
sampling-based planning algorithms
(Removing redundant nodes, smoothing)

• Computationally complex

Gradient-
based

Elastic Band [86], Elastic Strips [87], CHOMP [79],
[88], TrajOpt [89], [90], GPMP [91], GPMP2 [92],
STOMP [93], GCS [94]–[97]

• Refining an initial path subject to kinematic
and task-specific constraints.

• Getting stuck in local minima.
• Computationally complex.
• Hand-crafted cost functions.
• Requires collision gradient.
• Dependent on the initial guess

Gradient-based Optimization Methods: Gradient-based op-
timization methods leverage optimization techniques from
the field of optimal control to iteratively refine the initial
path subject to planning constraints. These methods formulate
planning as an optimization problem subject to kinematic and
task-specific constraints [17] (cf. motion planning definition
in Section II).

One approach to optimizing the initial path involves uti-
lizing elastic band [86] or elastic strips [87], [98], [99]
methods to locally deform the initial path for smoothness and
collision avoidance. These methods model the initial path as
an elastic band subjected to two types of artificial forces: an
internal force that maintains the connectivity of the path, and
an external repulsion force that steers the path away from
obstacles.

Another gradient-based approach is global optimization,
which also refines the initial trajectory utilizing a numerical
optimization method, subject to planning and task-specific
constraints [79], [88]–[92], [96], [100]–[114]. An early method
proposed for this approach involves subjecting the initial
trajectory to repulsive and attractive artificial potential fields
[115] to improve its quality [100].

The Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP) [79], [88] utilizes covariant gradient descent
[116] as the numerical optimization technique to optimize the
initial, in-collision trajectory. CHOMP discretizes the initial
trajectory into waypoints and subjects them to trajectory
smoothness and obstacle avoidance, modeled as pre-computed
signed distance fields [117]. In cluttered environments, a fine-
grained trajectory discretization is needed for optimization,
which increases computational complexity [110].

Trajectory Optimization (TrajOpt) employs continuous-time
collision checking [90] to ensure continuous-time safety,
thereby reducing the need for a large number of trajectory
states [89], [90]. TrajOpt utilizes sequential convex optimiza-
tion [118] for global optimization, which addresses the non-
convexity problem by solving a series of convex optimization
problems. Like CHOMP, TrajOpt also requires a densely
parameterized trajectory in clutter environments.

The main drawback of CHOMP and TrajOpt is the need for
a finely discretized trajectory for optimization. Continuous-
trajectory representation, like radial basis functions (FBS)
[104], and Gaussian process (GP) [91], has helped alleviate
this problem. Gaussian Process Motion Planning (GPMP) [91]
addresses this issue by parameterizing the initial trajectory via

a few states and utilizing a continuous Gaussian process for
interpolation to query the initial trajectory.

GPMP2 [92], [119] improves upon GPMP by considering
the trajectory optimization problem as probabilistic inference
[120], [121] on a factor graph [122]. It leverages Incremental
Smoothing and Mapping (iSAM2) [123] optimization algo-
rithm for trajectory optimization.

The main drawback of the above-mentioned gradient-based
optimization methods is that both cost and constraint functions
need to be differentiable. Stochastic trajectory optimization
methods relax the requirement for differentiable constraints
by utilizing sampling methods [93], [105], [124]–[131].
The Stochastic Trajectory Optimization for Motion Planning
(STOMP) [93], [124] improves upon the aforementioned
trajectory optimization methods by employing a derivative-
free stochastic optimization approach. This algorithm starts
by generating a set of random trajectories around the initial
candidate solution. Then, these trajectories are evaluated using
planning cost functions to update the candidate solution [132].

Another drawback of optimization-based planning algo-
rithms comes from the non-convexity of the planning problem.
Graphs of Convex Sets (GCS) [94]–[97] address this limitation
by modeling non-convex obstacle-avoidance constraints as a
collection of safe convex regions [133]–[135]. This approach
simplifies the planning process into two steps: selecting which
convex region to traverse (the discrete component), and opti-
mizing the parameterized robot trajectory within each region
(the continuous component). This formulation reduces the
planning problem to a Shortest-Path Problem (SPP) [136] over
the GCS.

Although optimization-based trajectory planners have been
widely used in the research community for trajectory planning,
there are several limitations and drawbacks associated with
them, including:

• Local minima - lack of formal completeness guaran-
tees: Optimization-based planners can easily get stuck in
local minima due to the inherent non-convexity of the
optimization problem.

• Collision gradients: The collision detection module in
the optimization-based motion planning algorithms is
required to provide collision gradients. The gradient helps
the optimal trajectory steer away from the obstacles. The
efficiency of optimization-based algorithms depends on
the smoothness and continuity of the collision gradients.
However, existing classical collision detection methods
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Initial Trajectory I
Final Trajectory I

Initial Trajectory II
Final Trajectory II

Fig. 6: An abstract illustration demonstrating how global
trajectory optimization techniques rely on the initial trajectory
to warm-start the optimization process. This highlights that
even slightly different initializations can lead to distinct final
trajectories.

only provide numerical [90] or stochastic gradients [93].
• Optimization warm-starting: As demonstrated in Figure

6, the output of optimization-based trajectory planning
methods is dependent on the initial trajectory. Therefore,
a feasible initialization is needed to avoid getting stuck
in local minima.

• Long-horizon, global optimization: Trajectory opti-
mization methods solve the optimization problem over a
long temporal horizon, which is challenging for dynamic
planning and real-time obstacle avoidance.

• Requiring hand-crafted cost functions: Trajectory op-
timization methods often require hand-crafted cost func-
tions to encode task-specific constraints, and desired
behaviors [137]. Within complex planning environments,
the cost function can become ill-conditioned and lead to
exploding and vanishing gradients. In turn, this will lead
to algorithmic singularity and the optimization problem
cannot converge to a solution.

Summary: One class of optimization-based algorithms uses
gradient-free methods, such as short-cutting [81], B-Splines
[83], and Bezier Curves [84], to post-process the output of
sampling-based algorithms such that the resulting path is
smooth and jerk-free.

Another class of optimization-based algorithms, known as
trajectory optimization (TO), uses gradient-based optimization
techniques to refine an initial straight-line path such that it
satisfies motion planning constraints. A key challenge with
these methods is their dependence on the initial trajectory,
which can lead to convergence to local minima. Recently,
deep learning frameworks have been utilized to warm-start
the optimization process to improve the efficiency of these
algorithms (Section V-D).

C. Collision Checking

Collision avoidance is an important component of motion
planning for robotic manipulators, which ensures the robot
avoids self-collision and collisions with the environment for
efficient plan execution [138], [139].

Collision and proximity queries are important algorithmic
primitives of sampling-based and optimization-based planning
algorithms. In sampling-based planning algorithms, 90% of

(a) Geometric Primitives (b) Spatial Decomposition

Fig. 7: Common practices for collision checking: (a) Convex
geometric primitives [138]. (b) Spatial decomposition [140].

the computation time is consumed for collision queries. The
primary goal of collision avoidance is to predict potential
collisions and redirect the planned path toward the free con-
figuration space.

Geometric Collision Checking: Geometric collision checking
methods utilize geometric primitives (e.g., spheres, ellipsoids),
and employ the Gilbert-Johnson-Keerthi (GJK) algorithm and
its variants for collision detection [141], [142]. A major
limitation of the geometric primitive method is its dependency
on the number of obstacles within the configuration space; as
the number of obstacles increases, so does the computational
complexity of the collision-checking method. To address this
issue, hierarchical representations are utilized [143], where
a coarse representation is utilized for initial fast collision
checking, and a finer representation is utilized when necessary
(e.g., near or in-collision scenarios).

There are generally two methods for hierarchical representa-
tion of the workspace, as illustrated in Figure 7: bounding vol-
ume hierarchy (BVH), and spatial decomposition (SD) [144].
Bounding volume hierarchy is an object-centric method that
utilizes bounding volumes, such as spheres, discrete oriented
polytope (k-DOP) [145], and oriented bounding box (OBB)
[146], for hierarchical representation of the environment [147].
Spatial decomposition, on the other hand, is a space-centric
method, that employs partitioning techniques such as K-d trees
[148], octrees [149], and space-time bounds to decompose
the workspace into cells. Cells are considered occupied if
an object occupies that cell [143]. Both hierarchical repre-
sentations are utilized for continuous [150] and point cloud
collision detection [140]. Continuous collision checking is
most suitable for local steering in sampling-based planning
algorithms, while point cloud collision checking is capable of
performing collision queries between point clouds and point
clouds and other geometric primitives. Furthermore, these
collision-checking algorithms can be parallelized to leverage
the capabilities of GPUs [151] and multi-core CPUs [152] for
enhanced parallel computations.

Signed Distance Fields (SDFs): The Signed distance func-
tion is an alternative methodology for representing collision
distances. It computes the distance between a point in the
workspace and a surface, assigning a zero value to points
on the surface. other points receive a signed value indicat-
ing the distance and direction relative to the surface. The
resulting Singed Distance Field (SDF) can be used as collision
avoidance constraints in various motion planning algorithms
[79]. These methods provide a distance field and its gradient
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for proper collision checking within trajectory optimization
methods [153]–[155].

Swept Volume: The swept volume between two manipulator
configurations represents the total volume occupied by the
manipulator as it moves from one configuration to another. It is
commonly used for continuous collision detection. However,
computing the exact swept volume for articulated objects, such
as robotic manipulators, is computationally complex. To ad-
dress this, several approximation methods have been proposed
in the literature, including polyhedra-based [156], occupation
grid-based [157], and boundary-based [158] algorithms.

Machine learning-based Proxy Collision Checkers: Proxy
collision checkers have been developed to improve the compu-
tational efficiency of motion planning algorithms for robotic
manipulators by replacing conventional geometric collision-
checking methods [41]. These proxy collision checkers are
utilized during the tree construction phase, while final path
validity is checked by an exact geometric collision checker.
Proxy collision checkers must maintain high accuracy to
avoid false negatives and scale well to high-dimensional
configuration spaces. Various machine learning-based binary
classifiers, including parametric methods like Support Vector
Machines (SVMs), and K-Nearest Neighbors (KNNs), as well
as non-parametric approaches like Gaussian Mixture Models
(GMMs), and Gaussian Processes (GPs)) have been utilized
as proxy collision checkers [159]–[166].

Collision Detection for pHRI: In addition to proactive
collision avoidance for motion planning, another line of re-
search focuses on utilizing sensors for contact detection [167]
in physical human-robot interaction (pHRI) scenarios where
human and robotic manipulators operate in close proximity.
In pHRI scenarios, proprioceptive sensors primarily detect
collisions, as exteroceptive sensors may not adequately predict
potential contacts between the robot and its environment.
Collision detection involves monitoring changes in the elec-
trical currents of manipulator drives [168], the differences
between measured torques and the nominal control law [169],
[170], and utilizing tactile sensors [171]. After a contact is
detected, the collision needs to be identified, and processed to
determine the intentionality, locality, duration, and severity of
it for efficient pHRI [172]. For a detailed review of contact
detection and collision management, refer to the survey paper
by Haddadin et al. [173].

Summary: Collision checking takes up to 90% of the com-
putation time in motion planning algorithms. Classical ap-
proaches rely on methods like geometric collision detec-
tion [140], [145], signed distance fields [79], swept volume
estimation [156], and machine learning-based proxy colli-
sion checkers [41]. In recent years, the parallelization, auto-
differentiation, and fast inference capabilities of deep neural
networks have been leveraged to improve the efficiency of
collision checking algorithms (Section V-E).

IV. DEEP LEARNING BASICS AND POTENTIAL FOR
ROBOTIC MANIPULATORS MOTION PLANNING

In this section, we introduce various building blocks of deep
learning methods used for manipulator motion planning.

A. Basic Deep Learning Frameworks

This section provides a brief introduction to basic deep
learning frameworks used in motion planning for robotic
manipulators. Table VII provides an overview of these frame-
works and their applications in robotic manipulator motion
planning.

Multi-layer Perceptrons (MLPs): Multi-layer perceptron is
an architecture that consists of stacking several fully connected
layers. Each layer in an MLP has two parts: an affine trans-
formation and an activation function. The activation function
introduces nonlinearity into the network such that MLPs are
realized as universal function approximations [174].

The universal function approximation property of multi-
layer perceptrons (MLPs) has enabled their utilization for
learning complex mappings in robotic manipulators’ motion
planning. When trained on an oracle planning dataset, these
structures rely on hierarchical nonlinear transformations to
capture global planning patterns. This allows MLPs to generate
end-to-end plans, replace the sampling primitive in sampling-
based algorithms for informed sampling, warm-start trajectory
optimization with high-quality initial guesses, or serve as a
proxy collision checker to accelerate planning.

Convolutional Neural Networks (CNNs): Although MLPs
are efficient in learning interactions between various features
in tabular data [175], they are agnostic toward existing patterns
within the data. In contrast, Convolutional Neural Networks
leverage the translation invariance [176] and locality properties
of convolutional kernels to capture spatial hierarchies and pat-
terns within grid-like topology data (e.g., images). Translation
invariance ensures that all regions of an image are treated
uniformly, while locality focuses on small neighborhoods to
encode hidden representations. These properties make CNNs
highly effective for image recognition, and object detection,
with applications in robotic manipulator autonomy stack [177].

In real-world motion planning, the exact geometry of ob-
stacles is often unknown, and planners often rely on partial
or noisy sensed representations obtained from cameras or
depth sensors. The locality and translation invariance of CNNs
enable them to extract spatially consistent features from sensed
representations such as occupancy grids, depth maps, or RGB
images. CNNs can capture both local obstacle geometry and
global workspace structure by hierarchically composing local
features into higher-level representations. This allows CNNs
to be integrated into motion planning for end-to-end planning,
to guide sampling in sampling-based algorithms, or serve as
a proxy collision checker to accelerate planning.

Recurrent Neural Networks (RNNs): MLPs and CNNs
are well-suited for handling fixed-length data, i.e., structured
tabular data and grid-like data structures. However, these
frameworks fall short for applications in domains such as time
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TABLE VII: Schematic of basic Deep learning frameworks, their characteristics, and their potential for improving various
components of classical planning algorithms for robotic manipulators.

Note: “E2E Planning” denotes end-to-end planning, “SBMP” denotes sampling-based motion planning algorithms, and “TO” denotes trajectory optimization
algorithms.

series prediction and language processing, where inputs are
sequential and vary in length [178].

Recurrent Neural Networks (RNNs) [179], [180] feature re-
current connections that capture the dynamics within sequence
data by maintaining a form of memory across the input. This
memory is achieved by incorporating cycles into the network’s
architecture, which allows RNNs to process data sequences
[181].

Motion planning for robotic manipulators is inherently a
long-horizon problem that requires reasoning over temporal
dependencies between successive configurations. RNNs allow
information from earlier steps in the planning to influence later
decisions by maintaining a hidden state that is updated sequen-
tially, which enables RNNs to capture temporal correlations.
Therefore, RNNs can be applied to generate end-to-end motion
plans by encoding sequential dependencies, or to bias samples
in sampling-based algorithms toward consistent regions of the
configuration space.

Graph Neural Networks (GNNs): MPLs, CNNs, and RNNs
are specialized in handling structured data, i.e., tabular, grid-
like, and sequential. Graph Neural Networks (GNNs) extend
beyond these limitations by being powerful tools for operating
on both structured and unstructured data [182].

Graphs and GNNs have been used for the representation
and encoding of data structures in a variety of applications,
including robotic tactile recognition [183], robotic grasping
[184], surface defect recognition [185], and water quality
prediction [186], showcasing their capability in representing
complex data structures and the relationships between their
elements.

The workspace and configuration space in robotic manip-
ulator motion planning are inherently high-dimensional, un-
structured, and exhibit spatiotemporal dependencies between
workspace entities. GNNs have the potential to encode these

dependencies by representing the planning problem as a graph,
where nodes encode workspace entities such as robots or
obstacles, and edges capture their relationships. The GNN
aggregates local and global dependencies with iterative mes-
sage passing while preserving permutation invariance. As a
result, GNNs are capable of encoding both spatial correlations
(e.g., robot-to-obstacle proximity) and temporal dependencies
within planning waypoints. Given these properties, GNNs can
be employed for end-to-end planning, to guiding the sam-
pling primitive in sampling-based algorithms toward feasible
regions, or serve as a proxy collision checker to accelerate
planning.

Transformers: The early boom in deep learning was powered
by foundational architectures like MLPs, CNNs, and RNNs.
However, the current wave of progress in deep learning is
predominantly driven by the transformer architecture. Central
to the transformer architecture is the multi-head attention
mechanism (scaled-dot product), which was originally pro-
posed by Vaswani et al. [187].

Transformers have become central to natural language pro-
cessing tasks [188], and have also emerged as the default
model for numerous vision tasks, including image recogni-
tion and object detection [189]. Moreover, transformers have
demonstrated impressive performance in other domains such
as reinforcement learning [190] and GNNs [191].

The multi-head attention mechanism operates on a collec-
tion of embedding vectors that represent candidate waypoints
or states along a planning trajectory. Within each head, the
scaled dot-product attention computes similarity between a
query vector (e.g., the current waypoint) and all key vectors
(other waypoints), to produce attention coefficients. These co-
efficients weight the corresponding value vectors to selectively
attend to past, present, or future waypoints that are most
relevant to the current planning state. Subsequently, multi-
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head attention encodes diverse dependency patterns within the
planning dataset (e.g., local smoothness vs. global feasibility).

Within the motion planning framework, the multi-head
attention mechanism encodes long-range spatiotemporal de-
pendencies across the planning trajectories, such that early
waypoints can directly influence the prediction of later ones to
improve the consistency of long-horizon trajectories. Conse-
quently, this framework can be leveraged to learn and encode
these dependencies for end-to-end planning, guiding sampling
primitive of sampling-based algorithms, and performing colli-
sion checking.

Large Language Models (LLMs): Large language models
are built upon the transformer architecture and are extensively
pre-trained on internet-scale datasets and can be fine-tuned
for specific tasks [192]. These models hold the potential to
significantly enhance various aspects of the robotics domain
[193]–[195].

LLMs and vision-language models (VLMs) have been
widely applied across the manipulation stack for robot policy
learning, high-level task planning, and code generation [26].
In policy learning, language-conditioned imitation learning
leverages the semantic understanding of LLMs to enable
vision-based manipulation guided by language instructions
[196]. These models also help decompose complex manip-
ulation tasks into simpler sub-tasks to assist reinforcement
learning agents to interact with the environment [197]. For
task planning, LLMs have been utilized to generate high-
level task plans for long-horizon, complex manipulation tasks
[30]. Additionally, their code generation capabilities reduce
the need for extensive domain knowledge in task planning and
manipulation [198]. These models can also be integrated with
classical planning algorithms to form a modular framework
for motion planning.

Although LLMs improve the generalizability of manip-
ulation algorithms, they still face challenges such as dis-
tribution shift during policy deployment. Furthermore, their
high computational demands and long inference times limit
their deployment on real-world robotic systems. Additionally,
these models are restricted to processing language without the
capability to reason about the physical world.

B. Generative Models

Discriminative and generative models are two fundamental
approaches for data modeling and prediction in deep learning.
These models serve different purposes and are based on
distinct principles for learning from data [174].

• Discriminative models: A discriminative model is pri-
marily applicable to tasks such as regression or classi-
fication, where the objective is to distinguish between
different classes or predict a specific value. Essentially,
a discriminative model aims to model the conditional
probability of the output given the input, focusing on
differences between classes.

• Generative models: A generative model learns to model
the underlying distribution of the training data and uses
this model for generating new data. For instance, an
image generation algorithm can generate new images by

learning the underlying statistical properties and patterns
of an image dataset.

Deep Generative Models (DGMs) [200] are neural networks
designed to approximate complex, high-dimensional probabil-
ity distributions within datasets. Once trained, a DGM can
estimate the likelihood of observations and generate samples
from the learned underlying distribution. These models have
been widely used in diverse applications such as anomaly
detection [201], wind farm control [202], and surface defect
recognition [203]. Some of the most popular approaches
in DGMs include Variational Auto-encoders (VAEs) [204],
Generative Adversarial Networks (GANs) [205], Normalizing
Flows [206], Energy-based Models (EBMs) [207], Diffusion
Models [208], and Flow Matching [209]. Table VIII provides
an overview of generative models, their characteristics, and
their application in robotic manipulator motion planning.

Motion planning datasets are inherently multi-modal where
multiple feasible trajectories may exist for a given planning
problem. Deep generative models capture this inherent multi-
modality by learning a distribution over trajectories and gen-
erate diverse candidates during inference. For instance, VAEs
can encode trajectories into a latent space and decode them to
generate new samples, GANs can learn to generate trajectories
by matching the distribution of the planning dataset, and
diffusion models can iteratively refine noisy trajectories via
learned denoising steps. This generative capability allows deep
generative models to be utilized to generate end-to-end plans,
to generate informed samples within sampling-based planning
algorithms, and to warm-starting trajectory optimization with
high-quality initial guesses.

Variational Auto-encoders (VAEs): VAEs are a class of deep
generative models designed to encode the distribution within
a dataset by mapping it into a latent space characterized by
a Gaussian distribution [210]–[216]. The learned underlying
distribution is then used to generate new data points.

VAEs consist of two components: an encoder and a decoder.
The encoder is a neural network that maps a data point to a
hidden representation in the latent space. The decoder is also a
neural network that reconstructs the input data from the latent
space representation.

Generative Adversarial Networks (GANs): GANs consist of
two components: a generator, and a discriminator [217], [218].
These components engage in a competitive interaction, where
the generator attempts to create data similar to the original
data, while the discriminator tries to distinguish between the
generated and the actual data. This competition allows GANs
to generate samples that closely resemble the original training
data.

Normalizing Flows (NFs): NF principle [219]–[221] is to
transform a simple distribution into a more complex distribu-
tion that better represents the underlying characteristics of the
dataset. This transformation is achieved through a sequence of
invertible, and differentiable mappings [222].

Energy-Based Models (EBMs): EBMs capture complex rela-
tionships within a dataset by defining a scalar energy function
over the data space [223]. The non-normalized probabilistic
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TABLE VIII: Schematic of various deep generative models, their characteristics, and their applications in improving various
components of classical planning algorithms for robotic manipulators. The flow matching figure is adopted from [199].

Note: “E2E Planning” denotes end-to-end planning, “SBMP” denotes sampling-based motion planning algorithms, and “TO” denotes trajectory optimization
algorithms.

property of EBMs allows them to be compatible with various
deep learning frameworks for energy function representation.
However, this property makes training EBMs challenging.
Additionally, in practical applications, selecting an appropriate
energy function is non-trivial and requires careful considera-
tion.

Diffusion Models: Diffusion models operate by sequentially
adding noise to the input data in a forward process and then
removing this noise in a backward process known as the
denoising process [224]. The effectiveness of diffusion models
relies on their ability to predict the noise added during the
forward process.

Flow Matching: Flow matching is an alternative to diffusion
models for generative modeling. Unlike diffusion models,
which rely on an iterative denoising process, flow matching
[199], [209] directly learns a time-dependent vector field that
transports the base distribution to the target distribution.

C. Point Cloud Neural Networks

3D point clouds, derived from 3D LIDAR and RGB-D
cameras, provide more information about the environment
compared to RGB images [225]. However, encoding 3D point
clouds with image processing neural networks is challenging
because they lack the inherent spatial structure found in
image data. Consequently, novel deep learning frameworks are

required for processing unstructured 3D point cloud data. No-
table among proposed point cloud neural networks (PCNets)
are PointNet [226], PointNet++ [227], and Point Transformer
[228], which combine basic neural network frameworks and
permutation invariance operators (e.g., sum, max) to operate
on 3D point cloud data [229].

In real-world settings, planners often have access to partial
and noisy 3D point cloud observations of the workspace. Point
cloud neural networks can encode such unstructured data,
where the number and ordering of points may vary across
observations. These models embed each point into a feature
space and then aggregate features across neighborhoods to ex-
tract meaningful workspace representations. In the context of
motion planning, these models can encode obstacle geometry,
free-space structure, and robot–workspace interactions directly
from sensor data. As a result, they can be leveraged for end-
to-end planning, to guide informed sampling in sampling-
based algorithms, and to accelerate collision checking with
perception-driven embeddings.

D. Neural Radiance Field

Neural Radiance Field (NeRF) frameworks learn 3D scene
representations from 2D images, and provide a promising
method for encoding perception and motion in robotics [230].
These frameworks take camera rays as input and output a
volumetric rendering of the scene. This volumetric rendering
has been integrated into classical path planning algorithms as
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occupancy representations for navigation [231]. Additionally,
NeRFs’ 3D structural bias makes them useful for object pose
estimation [232] and integration into manipulation policies
[233].

The success of motion planning algorithms for robotic
manipulators largely depends on accurate scene representa-
tion for collision checking. NeRF’s ability to reconstruct 3D
scenes from 2D images can be used for dynamic collision
checking between the manipulator and the neural field. Also,
the sampling primitive of sampling-based algorithms can be
conditioned on the reconstructed 3D scene for informed sam-
pling [234].

E. Neural SDFs
Neural SDFs are signed distance functions learned using

deep neural networks [235], [236]. They are commonly used
for scene reconstruction, where the zero-level set of the neural
SDF is extracted to represent clear geometric surfaces within
the scene. Collision checking is the major bottleneck in motion
planning for robotic manipulators. Neural SDFs also can be
considered as the collision avoidance constraint in motion
planning for robotic manipulators (Section V-E).

F. Robotic Foundation Models
LLMs are trained on large-scale internet datasets and

have been applied to text generation and open-vocabulary
visual recognition tasks. Their semantic reasoning and vi-
sual interpretation capabilities have been leveraged for high-
level robotic planning. However, since these models primarily
reason about semantics and textual prompts, they require
additional auxiliary components to handle low-level motion
planning and control tasks [26].

Robotic foundation models, also known as vision-language-
action (VLA) models, jointly process visual input, language
commands, and directly output executable actions for task-
conditioned control in an end-to-end manner [237], [238].
These models combine LLMs’ ability to encode text and
images with physical interactions learned from a robotic-
specific dataset [239] to establish generalist robotic systems
for manipulation.

V. DEEP LEARNING IN PLANNING FOR ROBOTIC
MANIPULATORS

In this section, we survey the state-of-the-art in utilizing
deep learning methods for robotic manipulator motion plan-
ning. Given that robots work within similar settings and tackle
similar motion planning problems, leveraging past planning
experiences expedites the search for future plans. Figure 8
provide an overview of the state-of-the-art research that uti-
lized deep learning frameworks for motion planning in robotic
manipulators. Additionally, Figure 9 presents the performance
metrics of a neural motion planner compared to benchmark
planners across varying levels of task complexity for a robotic
manipulator. This section is organized based on the deep
learning frameworks used to improve each component of
classical planning algorithms. Figure 10 provides an overview
of data representation, task representation, and training neural
motion planners.

A. End-to-end Planning
Deep learning frameworks have been utilized for end-to-end

planning to capture the complex spatio-temporal dependencies
and multi-modality inherent in motion planning for robotic
manipulators. Table IX overviews the state-of-the-art of utiliz-
ing deep learning for end-to-end planning, their contribution,
and performance compared to benchmark planners.

Multi-Layer Perceptrons (MLPs): Deep neural networks
(MLPs) have been utilized as universal approximations to learn
the motion policy of robotic manipulators. Pandy et al. [240]
employ an MLP consisting of a fully connected layer and
ten highway layers [350] to learn the motion policy of the
robotic manipulator. This framework processes a parameter-
ized description of the workspace and generates an end-to-
end trajectory. The network was trained using a customized
cost (loss) function that aims to minimize the path length and
avoid collision with workspace obstacles, such that the output
waypoints satisfy the planning constraints.

Convolutional Neural Networks (CNNs): Ota et al. [264]
also employ an MLP structure for short-horizon path way-
points generation. The proposed framework uses a CNN-based
encoder-decoder framework to encode the depth information
of the workspace and an MLP framework to generate way-
points for a downstream reactive motion generation algorithm.
This module processes the depth image of the environment and
the robot’s state to output waypoints leading to the goal, com-
plemented by a low-level reinforcement learning (RL)-based
action controller for navigation between these waypoints.

Neural Time Fields (NTFields) [265], a demonstration-free
deep learning planner, utilizes a ResNet-style deep neural
structure and 3D CNNs to generate the factorized time field
from the start/goal configurations and workspace embeddings.
Then, the speed model of the planning space is derived by
solving the Eikonal equation [351], [352] and used as the
gradient step to move from the start configuration to the end
configuration in a bi-directional manner. Progressive NTFields
(P-NTFields) et al. [266] improve upon NTFields to address
its generalizability and improve its success rate within clutter
environments. The proposed framework adds a viscosity term
(Laplacian of time field) to the Eikonal equation, which
guarantees the smoothness of the predicted time field. Addi-
tionally, they deploy a progressive speed scheduling technique
to address optimization difficulty near obstacles.

Constrained Neural Time Fields (C-NTFields) [6], [267]
modifies the expert speed model of progressive NTFields to in-
corporate kinematic constraints into the estimated time fields.
Task Space Regions (TSRs) [73] are leveraged to calculated
the distance between robot configurations and constraint mani-
folds. NTFields, P-NTFields, and C-NTFileds train time fields
estimator network offline and assume that the environment is
known a priori. Active NTFields (A-NTFields) [268] relaxes
this assumption by training the time field estimator network
on the fly. The proposed framework processes the incoming
sensor data to calculate the ground truth speed values, and
utilizes an online learning framework for training the network.

Ni et al. [269] improve NTFields’ learning convergence by
introducing temporal difference loss, normal alignment loss,
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MLPs [174]

End-to-end Planning End-to-end Path: [240]

Sampling-based Primitives
Informed Sampling: [20], [241]–[247].

Local Steering: [10], [248]–[250].

Constrained Sampling-based Learning Constrained Manifolds: [251]–[253].

Trajectory Optimization
Warm-starting Optimization Process: [5], [8]
[254].

Collision Checking Distance-to-collision Estimator: [255]–[263].

CNNs [177]

End-to-end Planning End-to-end Path [6], [264]–[269].

Sampling-based Primitives Informed Sampling: [270]–[274]

Collision Checking Binary Collision Estimator: [12], [275].

PC-Nets
[227]

End-to-end Planning End-to-end Path: [1], [2], [276]–[278].

RNNs [178]

End-to-end Planning End-to-end Path: [21]

Sampling-based primitives Informed-sampling: [279], [280]

GNNs [182]

Sampling-based Primitives Informed-sampling: [281]–[287]

Collision Checking Distance-to-collision Estimator: [9], [22], [288].

DGMs

Variational Auto-Encoders
(VAEs) [210]

End-to-end Planning End-to-end Path: [289], [290].

Sampling-based Primitives Informed Sampling: [3], [255], [291]–[303].

Constrained Sampling-based Learning Constrained Manifolds: [304], [305]

Trajectory Optimization Warm-starting Optimization Process: [11].

Generative Adversarial Network
(GAN) [217]

Constrained Sampling-based Learning Constrained Manifolds: [7], [306], [307].

Trajectory Optimization Warm-starting Optimization Process: [308].

Normalizing Flows (NFs) [219] Sampling-based Primitives Informed Sampling: [4].

Energy-based Models
(EBMs) [223]

Trajectory Optimization Warm-starting Optimization Process: [42], [309].

Diffusion Models [224] Trajectory Optimization Planning as Inference: [19], [310]–[322].

Flow Matching [209] Trajectory Optimization Planning as Inference: [323]–[325].

Transformers
[187]

Sampling-based Primitives Informed Sampling: [326], [327].

Collision Checking Distance-to-collision Estimator: [328].

Foundation
Models [28]

End-to-end Planning End-to-end Path: [329]–[332].

Neural SDFs
[235]

Collision Checking Distance-to-collision Estimator: [333]–[349].

Fig. 8: Deep learning application in manipulator planning.
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Fig. 9: A comparison of neural motion planners with benchmark planners across various planning complexities for out-of-
distribution planning scenarios. (a) Planning metrics were used to quantify the performance of motion planners. (b) Environment
complexity: SIMPNet [281] performance compared with benchmark planners (Bi-RRT [50], IRRT* [61], MPNet [20], KG-
Planner [282]) across different scenarios. (c) Degree of freedom: VQ-MPT [3] performance compared with benchmark planners
(RRT*, IRRT* [61], BIT* [65], MPNet [20]) across different scenarios. (d) Obstacle type: MPD [19] performance compared
with benchmark planners (Bi-RRT [50], GPMP [91]) across different scenarios.

and causality preservation alongside the original loss function.
The framework also employs a PirateNet structure [353], an
MLP with residual gates, to estimate the time field while
ensuring non-negativity, symmetry, and triangle inequality.
Furthermore, it incorporates an attention mechanism to condi-
tion the field estimation network on workspace embeddings,
enabling generalization to unseen workspaces.

Point Cloud Neural Networks (PC-Nets): Their ability
to process unstructured 3D data and remain invariant to
input permutations makes them well-suited for encoding
workspace/configuration space with motion planning prob-
lems. Motion Policy Networks (MπNets) [1], [276] features a
point-cloud encoder that leverages PointNet++ [227] to encode
the input point-cloud, which consists of the manipulator’s
current geometry, scene geometry, and manipulator’s target
pose, effectively representing the workspace. Additionally,
an MLP-based configuration encoder is used to capture the
robot’s current configuration, while another MLP serves as a
decoder to generate the next planning way-point guiding the
manipulator toward the goal configuration.

Neural MP [2] improves upon MπNets by incorporating
more realistic scenes for data generation. This framework also
utilizes an LSTM-based configuration encoder and implements
a stochastic learning framework based on Gaussian Mixture
Models (GMMs) to address the multi-modality inherent in
the planning dataset, and integrates a light-weight real-time
optimization module to improve both the efficiency and suc-
cess rate of the planning problem. Deep Reactive Policy
(DRP) [277] extends Neural MP by integrating a point cloud
encoder with an action-chunking transformer architecture for
end-to-end motion planning. DPR further fine-tunes the neural
planner using the Geometric Fabrics [354] framework and
privileged workspace information in simulation to resolve
minor collisions. In addition, it leverages point-cloud-aware

Riemannian Motion Policies [36] to enable reactive planning
in dynamic environments.

Motion Policy with LLM-Powered Dataset Synthesis and
Fusion Action-Chunking Transformers (PerFACT) [278] lever-
ages the planning capabilities of LLMs [28] and procedural
primitive generation [2] to create a diverse, and semantically
feasible set of workspaces for large-scale planning data col-
lection. It then combines a point cloud encoder with a fusion
action-chunking transformer architecture to intelligently attend
to various planning sensing modalities for efficient planning.

Recurrent Neural Networks: The recurrent connections
within RNNs have been leveraged to learn the temporal
dependencies within the motion planning problem. OracleNet
[21] employs stacked LSTM layers to preserve the temporal
information inherent in oracle paths. This framework generates
waypoints directed toward the goal configuration by incor-
porating the goal configuration as an auxiliary input to the
network.

Deep Generative Networks (DGNs) are powerful frameworks
for end-to-end motion planning. For instance, auto-encoders
(AEs) are utilized for end-to-end planning for robotic manip-
ulators.

DGNs - Auto Encoders (AE): Latent Space Path Planning
(LSPP) [289] employs a VAE to encode both the configuration
space (joint angles) and task space (end-effector positions)
based on a dataset of randomly generated configurations.
This specific method alleviates the need for explicit mapping
between configuration space and task space. For optimization,
Activation Maximization (AM) [355] is used to refine the
goal-reaching process by back-propagating the goal-reaching
error and the output of a binary collision checker network to
update the latent vector. This probabilistic approach allows the
planner to exploit areas of the latent space with higher prob-
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abilities, enhancing efficiency. However, a major limitation is
its requirement for predefined obstacle shapes for collision
checking, which is impractical for real-world applications. To
overcome this, Activation Maximization Planning in Latent
Space (AMP-LS) [290] integrates a neural collision predictor
that operates directly on environment point clouds.

Transformers and Large Language Models: The attention
mechanism in transformers and LLMs enables them to capture
the spatio-temporal dependencies inherent in motion planning
problems. Roco [329] utilizes an LLM agent (GPT-4) [28] to
generate workspace waypoints for multi-robot collaboration
scenarios. These waypoints are subsequently fed into a cen-
tralized RRT-based multi-arm motion planner for coordinated
planning across all manipulators. The model can generate a
new set of waypoints in each iteration by adjusting the tem-
perature of the GPT-4 model, which controls the stochasticity
of the language model.

Kwon et al. [330] investigate the use of LLMs for zero-
shot dense trajectory generation for robotic manipulators. They
show that, with well-designed task-agnostic prompts, LLMs
combined with off-the-shelf perception models can generate
sequences of end-effector poses without relying on auxiliary
low-level planning components [356]. However, since these
models are not trained on physical interaction data, they
struggle in handling low-level planning for robotic manipula-
tors. LATTE [331], [332] leverages pre-trained large language
models to modify initial workspace manipulator trajectories
given planning context. It takes in multiple data modalities -
scene geometry, images, user language command, and initial
trajectory - and processes them through a transformer encoder-
decoder structure to generate a modified trajectory. However,
post-processing is applied to ensure the modified trajectory
satisfies planning constraints since the output may not always
be valid.

The main challenge in using LLMs for end-to-end ma-
nipulator motion planning is that the problem is inherently
spatiotemporal rather than textual. As a result, LLM-based
manipulation planning often relies on pre-defined motion
primitives to carry out physical interactions within the environ-
ment and plan motions. This is due to the lack of large-scale
robotic data [30], [198], [356], [357].

B. Improving Unconstrained Sampling-based Planners’ Algo-
rithmic Primitives

This section reviews how deep learning methods have
improved the performance of these types of planners. As
mentioned in Section III-A, sampling-based planning algo-
rithms are built upon three algorithmic primitives: sampling,
steering, and collision checking. Deep learning frameworks
can be employed to improve each of these primitives to
increase both the efficiency and success rate of the algorithms.
Table X overviews deep learning application in unconstrained
sampling-based planning algorithms. Since collision checking
is a common component across all planning algorithms, the
application of deep learning frameworks for collision checking
will be discussed in detail in Section V-E.

1) Sampling Primitive: Deep learning frameworks can help
to address the low convergence rate of classic sampling-
based motion planners by leveraging historical data to gener-
ate collision-free informed samples within complex planning
workspaces and narrow passages. Table XI overviews the state-
of-the-art of utilizing deep learning for informed sampling,
their contribution, and performance compared to benchmark
planners.

Multi-Layer Perceptrons: Deep neural networks can encode
the underlying distribution of planning datasets, making them
well-suited for learning the underlying sampling distributions
for informed sampling within sampling-based planning al-
gorithms. Deep learning frameworks have been used as a
sampling distribution to explicitly generate informed samples
in place of the original sampling primitive of sampling-
based planners. Motion Planning Networks (MPNet) [20],
[241], [242] incorporates an MLP-based framework to serve
as the sampling primitive within the structure of sampling-
based planning algorithms. These frameworks maintain an
active Dropout layer [359] during inference (sampling), which
introduces stochastic behavior in the MLP-based sampler
for encoding the multi-modality within the planning prob-
lem. Contractive autoencoders (CAEs) [213] are used for
workspace embedding, ensuring robust representation. Ad-
ditionally, Path Planning and Collision Checking Network
(PPCNet) [243] consists of two neural networks: a planning
network and a collision checking network for repetitive bin-
picking tasks. The planning network processes the current and
goal configuration to output the next time-step configuration,
while the collision-checking network checks the validity of
steering toward this new configuration.

MLP models have also been employed to implicitly encode
and learn the planning space for informed sample generation.
Parque et al. [244] employed MLP networks to learn the linear
motion planning functions of robotic manipulators. These deep
networks map a given pair of start and goal configurations
of the planning problem to parameters that encode the lin-
ear transition of robot joints within the configuration space.
Parallelized Diffeomorphic Sampling-based Motion Planning
(PDMP) [245] combines the benefits of sampling-based and
trajectory optimization planning methods. This framework
utilizes an MLP structure to implicitly learn the occupancy
probability distribution of the workspace and transform it
through a differentiable bijection to configuration space for
informed sampling.

Bhardwaj et al. [246] formulate edge selection in lazy graph
search algorithms as a Markov Decision Process (MDP) and
apply imitation learning to train a deep neural network. This
network is designed to map the features of each edge to the
probability of its validity, enhancing the efficiency of motion
planning where edge collision checking is computationally ex-
pensive. Points-Guided Sampling Net (PGSN) [247] employs
a VAE framework to encode the workspace point cloud into a
linearly interpolatable latent space to enhance generalizability
to unseen environments. This framework employs an MLP-
based multi-modal sampling net to switch between different
mode of the planning problem to encode the inherent multi-
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TABLE IX: Overview of the state-of-the-art of utilizing deep learning for end-to-end planning, including the planning metrics
reported relative to evaluated benchmark methods, and each approach’s primary contribution to robotic manipulator motion
planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

Pandy et al.
[240]

95 ms PL-W : 25.2 73 • A planning-specific cost (loss) function.
• MLPs plus highway layers [350] as neural motion planner.

100 ms (RRT*) PL-W : 16.98 (RRT*) 1.45 (RRT*)

Ota et al. [264] - - -
• MLP-based neural waypoints generation for RL-based reactive
planning.

P-NTFields
[266]

0.03 PL-C : 0.43 92 • Utilizes ResNet-style deep network for configuration encoding.
• Utilizes 3D CNNs for workspace encoding.

0.05 (NTFields [265]) PL-C : 0.38
(NTFields [265])

84 (NTFields [265])

C-NTFields
[6]

0.05 PL-C : 1.32 100 • Utilizes TSR [73] to measure the distance to constraint
manifolds.

0.06 (CBiRRT [358]) PL-C : 1.30 (CBiRRT
[358])

100 (CBiRRT [358])

A-NTFields
[268]

0.03 PL-C : 2.25 91 • Calculates ground truth speed values on the fly.
• Estimates the time field on the fly.

1.36 (LazyPRM) PL-C : 3.05
(LazyPRM)

87 (LazyPRM)

Ni et al.
[269]

0.074 PL-C : 1.95 87 • Utilizes PirateNet [353] for the time field estimation.
• Leverage the attention mechanism to achieve generalizability.

0.063 (NTFields
[265])

PL-C : 1.63
(NTFields [265])

74 (NTFields [265])

OracleNet [21]
1.24 PL-C : 0.85 - • Utilizes RNNs to iteratively generated end-to-end paths.

• LSTM for encoding temporal dependencies.
29.32 (RRT*) PL-C : 1 (RRT*) -

MπNet [1]
0.33 - 82.78 • PointNet++ [226] as workspace and planning space encoder.

• Geometric, task-space loss for training.
16.46 (AIT*) - 100 (AIT*)

Neural MP [2]
- - 95.83 • PointNet++ [226] as workspace and planning space encoder.

• Encoding multi-modality via GMMs.
- - 16.67 (MπNet [1])

DRP [277]
- - 84.60 • Geometric Fabrics [354] for fine-tuning and RMPs [36]

for reactive planning.
- - 50.59 (Neural MP [2])

PerFACT [278]
- - 51.2 • LLMs [28] for large-scale dataset generation.

• Planning modality-aware end-to-end planning.
- - 14.6 (Neural MP [2])

LSPP [289]
179 ms PL-W: 1.52 85 • Planning with a latent space of a VAE.

• Using activation maximization [355] for updating latent vectors.
128 ms (BiRRT) PL-W: 2.33 (BiRRT) 84 (BiRRT)

Roco [329] - - -
• GPT-4 [28] for generating workspace intermediate goal states for
multi-arm motion planning.

Kwon et al.
[330]

- - - • LLMs for zero-shot planning for robotic manipulators.

LATTE [332] - - - • Reshaping trajectories via language commands.

Note: “T ” denotes planning time, “C” denotes planning cost, and “S” refers to success rate (Section II-C). “↓” indicates lower is better, and “↑” indicates
higher is better. “PL-W” refers to path length measured in the workspace, and “PL-C” denotes path length in the configuration space.

modality.

Convolutional Neural Networks (CNNs): Transition invari-
ance and locality properties of CNNs allow encoding the
inherent distribution within planning data for informed sample
generation, and effective workspace encoding. These models
account for spatial information and can capture both local
and global structures. Hierarchical Abstraction guided Robot
Planner (HARP) [270] employs a U-net [360] architecture
to identify critical regions (abstractions) for end-effector and
other DOFs that are not defined by the end-effector’s position.

Then, it utilizes a customized high-level planner to generate
high-level plans that are further refined by a low-level planner
for trajectory generation between start and goal configurations.
Similarly, Bottleneck guided RRT∗ [271] utilizes a 3D CNN
for encoding the bottleneck regions (narrow passages) in
the workspace, biasing the sampling of the sampling-based
planners towards these regions. Abdi et al. [272] leverage an
object detection model (YOLO [361]) coupled with a deep
neural network to get the coordinate of objects within the
workspace. Then, a graph search algorithm is leveraged over
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TABLE X: State-of-the-art literature on utilizing various deep learning frameworks to improve various components of sampling-
based motion planning algorithms for robotic manipulator motion planning.

Primitive Papers MLPs CNNs RNNs GNNs Generative Models Transformers Foundation Models

Sampling

[20], [241]–[247] ✓ ✗ ✗ ✗ ✗ ✗ ✗

[270]–[274] ✗ ✓ ✗ ✗ ✗ ✗ ✗

[279], [280] ✗ ✗ ✓ ✗ ✗ ✗ ✗

[281]–[287] ✗ ✗ ✗ ✓ ✗ ✗ ✗

[3], [4], [255], [291]–[303] ✗ ✗ ✗ ✗ ✓ ✗ ✗

[326], [327] ✗ ✗ ✗ ✗ ✗ ✓ ✗

Steering [10], [248]–[250] ✓ ✗ ✗ ✗ ✗ ✗ ✗

Note: “MLPs” denotes multi-layer perceptrons, “CNNs” denotes convolutional neural networks, “RNNs” denotes recurrent neural networks,
and “GNNs” denotes graph neural networks.

a grid in the workspace to find a path between the start and
goal poses.

FIRE (Fast retrIeval of Relevant Experiences) [273] re-
trieves relevant location representations from past planning
instances to guide the planning problem. This method utilizes
a self-supervising method to find pairs of similar-dissimilar
location representations. Then, a similarity function through
the latent space of Siamese network [362] - a CNN-based
neural network architecture with two identical encoders - is
trained to retrieve relevant experiences to guide the plan-
ning problem and ensure generalizability to out-of-distribution
problems. Heuristic Map Network (HMNet) [274] employs
a CNN-based framework to embed and encode workspace
information, to learn a heuristic map (cost-to-go) for guiding
the sampling process of the planning algorithm to perform
guided exploration towards the planning goal.

Recurrent Neural Networks (RNNs): recognized for their
capability to encode inherent temporal sequences, have been
effectively employed to enhance the sampling module within
sampling-based planners and to encode dynamic dependencies
in dynamic task spaces. The recurrent connection within
RNNs effectively encodes spatial and temporal relationships
within planning datasets. LSTM-BiRRT [279] incorporates an
LSTM sampler to guide the BiRRT algorithm toward the goal
configuration by leveraging past planning experiences in dual-
arm planning scenarios. Similarly, Hou et al. [280] utilizes
an RNN-based encoder to capture the temporal dependencies
within dynamic/static environments. The proposed framework
also implements a deep neural network to learn the feasible
solution space from past experiences, enhancing sampling
efficiency.

Graph Neural Networks (GNNs): The capability of GNNs
to accurately characterize and learn the structure of Euclidean
and non-Euclidean data makes them highly effective for en-
coding the planning space and biasing the sampling distribu-
tion sampling-based planning algorithms towards the planning
goal. Spatial-Informed Motion Planning Network (SIMPNet)
[281] and KG-Planner [282], [283] construct graphs repre-
senting the kinematic structure of the robotic manipulator.
Then, a graph neural network is trained on the constructed
graph to generate informed, kinematic aware samples towards

the planning goal. Yu et al. [284], [285] accelerated classical
sampling-based motion planners by utilizing a trained GNN
for path exploration and path smoothing. This framework
generates a random graph (RGG) by randomly sampling
within the configuration space and including start and goal
configurations. Then, the GNN determines the validity of
RGG’s edges to reduce collision queries. This framework also
incorporates a cross-attention mechanism to integrate the ob-
stacle embeddings from the workspace into the configuration
space for environment-aware motion planning.

Zhang et al. [286] utilizes a GNN framework to encode
the spatio-temporal structure within dynamic motion planning.
The network uses an RGG and an attention-based temporal
encoding of the dynamic obstacles to determine which edges
to steer to minimize unnecessary collision queries. In this
framework, the trajectory of the dynamic obstacles needs to be
known a priori, which is not necessarily the case in real-world
examples. In subsequent work, Zhang et al. [287] introduces
DynGMP to mitigate the need for prior knowledge of the
movement of the dynamic obstacles and plan in unpredictable
dynamic environments. In this framework, a GNN trained
on an RGG determines edge priority. DynGMP preserves
collision-free parts of the initially constructed tree for reuse in
subsequent tree constructions, performing collision-checking
on nodes and edges that intersect with the geometries of the
obstacles and the robot to reduce the computational overhead
of the replanning sub-module.

Deep generative networks (DGNs) are powerful deep learn-
ing frameworks utilized to capture the multimodal nature
within planning datasets. DGN models such as auto-encoders
(AEs), generative adversarial networks (GANs), and normal-
izing flows (NFs) are commonly used to enhance the sampling
primitive of sampling-based planning algorithms.

DGNs - Auto-Encoders (AEs): AEs are effective for learning
sampling distributions in sampling-based planning algorithms
by encoding the dataset into a latent space. Ichter et al.
[291] employs a conditional variational autoencoder (CVAE)
conditioned on planning information (i.e., obstacles, start and
goal configurations) to bias the sampling process to promising
regions of configuration space. This framework learns the
underlying structure within the planning dataset generated by
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TABLE XI: Overview of the state-of-the-art of utilizing deep learning frameworks for informed sampling, including the planning
metrics reported relative to evaluated benchmark methods, and each approach’s primary contribution to robotic manipulator
motion planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

MPNet [241]
0.81 PL-C : 6.98 78.6 • MLP framework as informed sampler.

• Dropout [359] for encoding planning multi-modality.
9.2 (BIT*) 10.78 (BIT*) 56 (BIT*)

PCCNet [243]
0.1 PL-C : 5.88 90 • MLP-based informed sampler and collision-checker for

bin-picking tasks.
0.38 (MPNet [241]) 7.3 (MPNet [241]) 94.4 (MPNet [241])

Hou et al.
[280]

0.6 - -
• MLP-based informed sampling distribution.

0.81 (RRT) - -

PDMP [245]
5.99 - 96 • MLP to learn occupancy distribution.

• Transforms distribution to configuration space for sampling.
13.83 (RRT*) - 43 (RRT*)

HARP [270]
- - 100 • U-net for critical region identification for the end effector

as well as other DOFs.
- - ∼ 50 (BiRRT)

HMNet [274]
149 ms PL-W : 0.99 100

• Learning heuristic map through 3D CNN.
2466 ms (BiRRT) 3.8 (BiRRT) 76 (BiRRT)

SIMPNet [274]
6.3 PL-C : 5.9 65 • GNNs for kinematic-aware informed sampling.

• Cross-attention mechanism for workspace-aware sampling.
20 (MPNet [241]) 4.4 (MPNet [241]) 37 (MPNet [241])

SERA [293]
9.1 - 95.3 • VAE for mapping the planning space into a low-dimensional

latent space.
22.6 (MPNet [241]) - 82.5 (MPNet [241])

VQ-MPT [3]
0.9 #V: 45 97 • VQ-VAEs [215] for encoding feasible sampling regions.

• Transformer-based sampling within feasible regions.
5.18 (MPNet [241]) #V: 147 (MPNet [241]) 94 (MPNet [241])

G-WAE [303]
4.36 PL-W : 1.86 80 • WAEs [216] for encoding free configuration space.

• GGNNs [363] for spatial-aware encoding.
9.74 (RRT*) PL-W : 2.21 (RRT*) 37 (RRT*)

P-Flows [4]
- #V: 11.6× 103 -

• Utilizes normalizing flows to learn sampling distribution.
- #V : 32.7× 103

(MPNet [241])
-

NEXT [326]
- PL-C : 17.5 70.6 • Leverages attention mechanism to encode configuration space

into a discrete latent space.
- PL -C : 29.6 (BIT*) 47.5 (BIT*)

TEMP [326]
0.741 #V : 195 -

• Utilizes attention mechanism for informed sample generation.
17.87 (RRT*) #V : 1486 (RRT*) -

Note: “T ” denotes planning time, “C” denotes planning cost, and “S” refers to success rate (Section II-C). “↓” indicates lower is better, and “↑” indicates
higher is better. “PL-W” refers to path length measured in the workspace, “PL-C” denotes path length in the configuration space, and “#V” indicates the
number of vertices the planner explores to plan.

an oracle planner and generates informed samples within the
framework of sampling-based planning algorithms. Dastider
et al [292]–[294] introduced a motion planning framework
that transforms the high-dimensional configuration space into
a low-dimensional latent space using a CVAE framework
to generate adaptable motion policies. Then, a graph search
algorithm is deployed to plan in the learned low-dimensional
latent space. They further enhance their approach by im-
plementing a diffusion variational autoencoder (D-VAE) to
encode and reduce the dimensionality of the planning space
for motion planning in a low-dimensional space [295]. The D-
VAE encodes the motion dynamics of the robotic manipulator
and moving obstacles into a unified framework. This approach
utilizes an extended Kalman filter (EKF) [364] to predict the

movement of dynamic obstacles.

Latent Sampling-Based Motion Planning (L-SBMP) [255]
employs an encoder-decoder framework to encode high-
dimensional planning spaces into a low-dimensional latent
space and performs sampling-based motion planning within
it. This allows sampling, steering, and collision checking to
be conducted more efficiently within the low-dimensional
latent space, thus enhancing the efficiency and reducing the
computational complexity of motion planning for high DOF
robotic manipulators. Leveraging Experience with Graph Or-
acles (LEGO) [296] trains a CVAE on an RGG to generate a
roadmap which contains bottleneck nodes within the planning
space. The work [297], employed LEGO-CVAE [296] to
identify and learn the critical bottleneck regions within the
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planning space, generating informed samples that serve as
roots for RRT motion planning algorithm.

Gaebert et al. [298] employed a CVAE to encode the
planning space and generate informed samples conditioned on
the motion planning problem (start and goal configuration and
workspace encoding). The CVAE-based sampler is incorpo-
rated into any sampling-based planning algorithm for informed
sample generation. Kobashi et al. [299] proposed decomposing
the task space of the motion planning problem to handle the
high variance implicit within such problems. This framework
utilizes Binary Space Partitioning (BSP) [365] to partition the
workplace and identify challenging regions and assign nodes
to them. Then, the assigned nodes are used to train a neural
network for generating nodes for new workspaces. And, a
CVAE - conditioned on environment embeddings - is utilized
to generate samples around key nodes for planning.

The Neural Randomized Planner (NRP) [300] trains a
discriminative MLP and a generative CVAE neural local
sampler to learn local sampling distributions. Then, these
local samplers are used within global sampling-based motion
planners for motion planning. Planning with Learned Subgoals
(PLS) [301] incorporates the planning problem’s temporal
information to account for temporal constraints. This model
feeds the temporal and spatial information of the planning
problem to a CVAE to generate sub-goal configurations for
planning, effectively handles time-constrained, reactive motion
planning scenarios in dynamic environments.

Vector Quantized-Motion Planning Transformers (VQ-
MPT) [3], [302] utilizes Vector Quantized-Variational Autoen-
coders (VQ-VAEs) [215] to learn and encode the configuration
space, aiming to reduce its dimensionality and identify areas
likely to contain feasible paths. VQ-VAEs help to avoid the
issue of posterior collapse, a common problem in traditional
variational autoencoders, making them particularly effective
for encoding high-dimensional configuration spaces. VQ-MPT
also incorporates a cross-attention mechanism to condition the
planning problem on workspace embedding, and start and goal
configurations. Additionally, an auto-regressive transformer is
employed to capture long-horizon correlations and sample
within promising regions within the configuration space. This
facilitates informed sampling in downstream sampling-based
motion planning algorithms, enhancing the efficiency of these
planners.

Graph Wasserstein Autoencoder (GraphWAE) [303], utilizes
a variant of the Wasserstein Autoencoder (WAE) [216] with
Gated Graph Neural Networks (GGNNs) [363] as encoder
and decoder, to encode the collision-free region within the
configuration space. The WAEs, compared to VAEs, offer
enhanced stability during training and demonstrate sufficient
representation capabilities, which are crucial for encoding
high-dimensional and complex configuration spaces. This
framework is trained on a successful path dataset, and the
decoder (graph generative model) is leveraged as a neural
informed sampler for a downstream sampling-based planning
algorithm.

DGNs - Normalizing flows (NFs): NFs have also been
employed to effectively encode the configuration space for in-

formed sampling within sampling-based planning algorithms.
A distinctive property of NF is that they don’t experience
mode collapse, thanks to the inclusion of the mode collapse
loss in the optimization problem. PlannerFlows [4] learns the
sampling distribution of sampling-based planning algorithms
through normalizing flows. This framework is conditioned on
planning information (i.e., workspace embedding, start and
goal configurations) to generate informed samples towards the
planning goal.

Transformers: Transformers and attention mechanisms have
been leveraged to encode the long-horizon spatiotemporal
dependency within planning problems. Neural Exploration-
Exploitation Tree (NEXT) algorithm [326] utilizes an
attention-based network to embed the configuration space
into a discrete latent representation. Then, a neuralized value
iteration [366] is applied in the discretized latent space for
informed sample generation. Transformer Enhanced Motion
Planner (TEMP) [327] leverages the transformer architec-
ture’s ability to encode long-horizon dependencies and inter-
relationships for generating next state configuration. This
framework gets workspace embeddings, planning history, and
planning objectives, and outputs informed samples to expand
the constructed tree towards the planning goal. This approach
has enhanced both planning time and planning efficiency
compared to classical planners.

2) Steering Primitive: Neural network architectures can
also be utilized for steering in sampling-based planning al-
gorithms. Typically, classical sampling-based planners steer
towards the sampled configuration along a straight line, which
requires fine-grained collision queries. Learning-based cus-
tomized steering function can be applied to minimize the early
termination of the expansion and improve the efficiency of the
planner. Table XII provides an overview of the state-of-the-
art of utilizing deep learning for steering in sampling-based
planning algorithms.

Multi-Layer Perceptrons: MLPs are utilized to learn the
steering primitive in sampling-based planning algorithms.
One approach to implementing customized steering functions
involves using control barrier function (CBF)-based [367]
steering controllers. These controllers steer the robot towards
the sampled configuration while avoiding collision with the
obstacles. However, hand-crafted CBF-based controllers often
struggle to generalize to unseen configuration spaces, and
different robots, particularly those with higher DOF. Control
Barrier Function-Induced Neural Controller (CBF-INC) [248]
addresses this limitation by designing a neural control barrier
function for collision avoidance and informed steering within
sampling-based motion planners. By reducing the number of
collision checks and enhancing the steering function, CBF-
INC increases the success rate and efficiency of the sampling-
based planning algorithms.

Chiang et al. [10], [249] utilize deep neural networks
to estimate the manipulator’s swept volume between two
configurations to use it as the steering primitive to improve
sampling-based planning algorithms. This process leverages
explicit neural representations to enhance the process. This
approach benefits from the local steering module having prior
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TABLE XII: Overview of the state-of-the-art of deep learning for improving the steering primitive, including the planning
metrics reported relative to evaluated benchmark methods, and each approach’s primary contribution to robotic manipulator
motion planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

CBF-INC [248]
345.8 #V : 162.5 76.1

• Utilizes a neural control barrier function for effective steering.
287.6 (RRT) #V: 252.5 (RRT) 62.5 (RRT)

Chiang et al.
[10]

- PL - L : 90 80 • Deep neural network for implicit swept volume estimation
for efficient steering.

- PL - L: 100 (PRM) 40 (PRM)

Note: “T ” denotes planning time, “C” denotes planning cost, and “S” refers to success rate (Section II-C). “↓” indicates lower is better, and “↑” indicates
higher is better. “PL-L” refers to the swept volume of the robotic manipulator in liters, and “#V” indicates the number of vertices the planner explores to
plan. Please note that the main difference between the listed methods and respective benchmarks is the steering function within the sampling-based planning
algorithm.

knowledge and proper representation of obstacle distributions
within the configuration space. However, classic measures like
configuration space Euclidean distance do not account for ob-
stacle distributions, and weighted Euclidean metrics are hard to
tune. To address this, Their framework utilizes an MLP-based
network to approximate swept volume, though steering with
the trained Deep Neural Network (DNN) remains complex
due to the frequent need for inference throughout the planning
process. To mitigate this, the authors suggest using a weighted
Euclidean estimator (a single-layer neural network) for pre-
filtering configurations before applying the trained MLP-based
swept estimator model for steering, optimizing the steering
in sampling-based motion planning algorithms. However, the
offline data collection required for training these deep neural
networks is time-consuming, as are the pre-processing steps
needed for distance calculations in generating ground truth
labels. To mitigate these challenges, Sugaya et al. [250] apply
transfer learning [368] to the learning of the swept volume
function, aiming to capture geometrical similarities among the
same type of robotic manipulators.

C. Constrained Sampling-based Planning

In real-world manipulation settings, the output of the motion
planning algorithms must satisfy certain task-specific and
manipulator-specific constraints (Section III). Deep learning
methods have been effectively utilized to encode constraint
representations in constrained motion planning. Table XIII
provides an overview of the state-of-the-art of utilizing deep
learning for constrained sampling-based planning.

Multi-Layer Perceptrons: MLPs are utilized to facilitate
constraint-aware sampling and projecting informed samples on
constraint manifolds. Constrained Motion Planning networks
(CoMPNet) [251] extends the MPNet framework [241] to han-
dle constrained motion planning. Using a projection operator,
CoMPNet uses MPNet’s neural stochastic sampler to generate
informed samples, which are then projected onto the constraint
manifold. Constraint manifolds are defined through Task Space
Regions (TSRs) [73], and task constraints are implicitly em-
bedded within task descriptions. CoMPNetX [252] extends
CoMPNet by introducing a discriminator neural network that
estimates the distance between generated samples and the
constraint manifolds. The discriminator network gradient is

leveraged to project the configuration onto the constraint
manifold if a generated configuration lies outside a defined
threshold.

Also, deep learning frameworks have been utilized to learn
constraint manifolds and directly sample on them during
planning. Equality Constraint Manifold Neural Network (ECo-
MaNN) [253] leverages a deep learning framework to learn
equality constraint manifolds from demonstrations, which can
then be integrated into constrained sampling-based planners.
This trained framework evaluates whether a robot configura-
tion satisfies a given constraint and, if not, determines the
distance from the constraint manifold.

Deep Generative Networks (DGNs): DGNs’ ability to learn
the underlying distribution of datasets has been leveraged
to directly learn constrained manifolds for constraint-aware
sampling. DGN models such as auto-encoders (AEs), and
generative adversarial networks (GANs) are commonly used
for this purpose.

DGNs - Auto-Encoders (AEs): AEs have been used for
learning equality constraint manifolds in constrained motion
planning. Learning-Assisted Constrained RRT (LAC-RRT)
[304] utilizes Configuration Transfer Model (CTM) - a self-
supervised, encoder-decoder architecture - to map configura-
tions from configuration space to a feature space for constraint-
aware sampling. In this feature space, a custom feature com-
poser is utilized to impose planning equality constraints on
the encoder’s output. This is advantageous as handling equality
constraints in the feature space becomes more straightforward.
Additionally, Park et al. [305] use a conditional variational
autoencoder (CVAE) to learn constraint manifolds. Their
framework maps the planning problem into a latent space
conditioned on planning constraints and performs planning
within this space. A validity network is employed to verify
constraint satisfaction in the latent space. After planning, the
path is mapped back to the configuration space, where a
numerical projector projects the generated waypoints onto the
constraint manifolds.

DGNs - Generative Adversarial networks (GANs): GANs
also have been used to learn constraint manifolds due to
their scalability to high-DOF spaces and encoding conditional
distributions. Lembono et al. [306], [307] utilized a GANs
architecture to generate samples that are already close to
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TABLE XIII: Overview of the state-of-the-art of deep learning for improving constrained sampling-based planning, including
the planning metrics reported relative to evaluated benchmark methods, and each approach’s primary contribution to robotic
manipulator motion planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

CoMPNet
[251]

4.92 - - • Utilizes MPNet’s sampler for informed sampling.
• Projects samples on constraint manifolds via projection operator.

54.81 (CBiRRT [358]) - -
CoMPNetX
[252]

15.05 - - • Utilizes a deterministic neural projector to project informed
samples on the constraint manifolds.

19.77 (CoMPNet
[251])

- -

LAC-RRT
[304]

5.37 #V 203.11 100 • Utilizes an encoder-decoder structure for configuration encoding.
• Equality constraints are enforced within the latent space.

47.2 (CBiRRT [358]) #V 196.6 (CBiRRT
[358])

100 (CBiRRT [358])

Park et al.
[305]

2.19 - 100 • Implements constraint-aware planning in VAE’s latent space.
• Implements latent jump to address manifold discontinuities
within the latent space.

2.42 (CoMPNetX
[252])

- 100 (CoMPNetX
[252])

Lembono
et al. [307]

0.74 #V: 59.7 99 • Utilizes GANs for constraint-aware informed sampling.
• Implements an ensemble of networks for the GANs generator
to encode planning multi-modality.

1.44 (CBiRRT2 [73]) #V: 116.5 (CBiRRT2
[73])

100 (CBiRRT2 [73])

Acar et al.
[7]

0.116 - 100 • Utilizes GANs for constraint-aware informed sampling.
• Utilizes VAEs for constraint-aware informed sampling.

0.57 (CBiRRT [358]) - 100 (CBiRRT [358])

Note: “T ” denotes planning time, “C” denotes planning cost, and “S” refers to success rate (Section II-C). “↓” indicates lower is better, and “↑” indicates
higher is better. “#V” indicates the number of steps the planner explores on constraint manifolds to plan.

the constraints manifold. Their approach involves using an
ensemble of neural networks in the GAN generator to encode
the multi-modality inherent in the dataset and mitigate mode
collapse. This framework decreases the number of projec-
tions and reduces planning time. Acar et al. [7] utilize two
deep generative networks (DGNs)- CVAEs, and GANs - for
constraint-aware sample generation. Their method learn task-
specific constraint manifolds - such as end-effector pose,
closed-kinematic chain, and balance - to facilitate sampling
within the framework of constrained sampling-based planning
algorithms.

D. Global Trajectory Optimization

Deep learning methods have increasingly been leveraged to
learn prior trajectory distributions to guide the trajectory opti-
mization algorithm. These frameworks combine the expressive
power of deep learning frameworks with robust trajectory
optimization algorithms for efficient trajectory planning. Table
XIV provides an overview of the state-of-the-art of utilizing
deep learning for warm-starting trajectory optimization algo-
rithms.

Multi-Layer Perceptrons (MLPs): MLPs are used to learn
the initial trajectories from planning data due to their universal
approximation capability. Deep-learning Jerk-limited Grasp
Optimized Motion Planner (DJ-GOMP) [5] incorporates an
MLP-based deep-learning module to provide a robust initial
approximation for the associated optimization-based motion
planning algorithm. The proposed network has multiple output
heads to generate initial paths with different horizon lengths.
Then, a classification network predicts the optimal initial
trajectory from the set of initial trajectories with various
horizon lengths. Similarly, Banerjee et al. [254] employed

an MLP framework to warm-start their underlying trajectory
optimization problem. The proposed MLP-based framework
takes the start and goal states in the workspace and generates
the coefficients for a polynomial parameterization of the initial
trajectory.

Constrained Neural Motion Planning with B-splines (CNP-
B) [8] employs a deep neural network for constrained kin-
odynamic motion planning. The initial trajectory is time-
parameterized using B-splines, and the network predicts the
control points of the spline. The training loss is defined based
on the constraint manifold loss, allowing the model to be
trained with supervision using only motion planning problem
instances.

Deep Generative Networks (DGNs): DGNs are increasingly
used in motion planning to learn distributions of successful
paths from datasets, which can be used as priors in trajectory
optimization problems. These learned priors can be used
to generate the initial trajectories for gradient-based trajec-
tory optimization problems, or within a maximum-a-posterior
(MAP) formulation of trajectory optimization problems, typ-
ically conditioned on motion planning constraints and goals,
for end-to-end trajectory optimization.

DGNs - Auto-Encoders (AEs): AEs’ ability to encode the
underlying distribution within datasets is utilized to generate
the initial trajectory for the trajectory optimization algorithm.
Motion Planning by Learning the Solution Manifold (MPSM)
[11] learns the solution manifold of trajectories using a VAE
architecture with a customized loss function. Trained on non-
optimal trajectories sampled from a baseline proposal distri-
bution, the framework generates trajectories that are further
finetuned using the CHOMP [79] algorithm.
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TABLE XIV: Overview of the state-of-the-art of deep learning for improving trajectory optimization, including the planning
metrics reported relative to evaluated benchmark methods, and each approach’s primary contribution to robotic manipulator
motion planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

DJ-GOMP
[5]

0.75 - - • Utilizes an MLP framework to estimate the initial trajectory
for warm-starting trajectory optimization.

1.25 (TrajOpt [90]) - -

CNP-B [8]
8 ms - 100 • Parametrizes the initial trajectory via B-spline.

• utilizes an MLP to predict the control points of the B-spline.
60 ms (BIT*) - 100 (BIT*)

MPSM [11]
0.21 - - • Encodes solution manifolds with a customized VAE structure.

• Utilizes CHOMP [79] for fine-tuning the generated trajectories.
1.8 (CHOMP [79]) - -

Ando et al.
[308]

5.94 ms PL - W: 3 81.8 • Encodes solution manifolds with a GAN architecture.
• Trajectory optimization is done in the obstacle-free latent space.

125 ms (BiRRT) PL - W: 3.14 (BiRRT) 100 (BiRRT)
GFCOP
[309]

5.2 PL - W: 1.32 98 • GFs [354] for local and CMA-ES [369] for global optimality.
• An EBM for warm-starting CMA-ES optimization.

6 (BIT*) PL - W: 3.71 (BIT*) 100 (BIT*)

MPD [19]
1.1 PL - C: 9.9 100 • Formulates motion planning as inference with a diffusion model.

• Utilizes temporal U-net [370] for the denoising process.
194.4 (GPMP [91]) PL - C: 5.1 (GPMP

[91])
42 (GPMP [91])

M2Diffuser
[314]

3.89 - 30.49 • Diffusion process for trajectory distribution learning.
• Task goals and planning costs guide the generative algorithm.

0.46 (MπNets [1]) - 3.24 (MπNets [1])

EDMP [320]
- - 85 • Diffusion-based trajectory generation with collision guidance.

• Ensemble-of-collision-costs improves generalizability.
- - 32 (CHOMP [79])

Sharma et al.
[321]

2.74 - 85.13 • utilizes a hierarchy of cascaded diffusion models to encode
global and local information of the planning problem.

1.94 (EDMP [320]) - 80.3 (EDMP [320])
DiffSeeder
[310]

42.3 - 86 • Employs a conditional diffusion model for warm-starting
the cuRobo [138] trajectory optimization algorithm.

38.6 (cuRobo [138]) - 57 (cuRobo [138])
Luo et al.
[322]

0.13 - 99.7 • Trains EBMs of the planning space.
• Leverages EMBs’ gradient for the denoising process.

0.22 (MπNets [1]) - 88 (MπNets [1])
FlowMP
[323]

0.13 - - • Incorporates acceleration and jerk fields for smooth
and dynamically aware trajectory generation.

5.29 (MPD [19]) - -

Note: “T ” denotes planning time, “C” denotes planning cost, and “S” refers to success rate (Section II-C). “↓” indicates lower is better, and “↑” indicates
higher is better. “PL-W” refers to path length measured in the workspace, and “PL-C” denotes path length in the configuration space.

DGNs - Generative Adversarial Networks (GANS): GANs
have been utilized to encode and learn the solution manifolds
for trajectory planning. Ando et al. [308] implemented a
conditional GAN framework conditioned on obstacle infor-
mation and using an RGG (comprising both in-collision and
collision-free configurations). The framework encodes the free
space of the configuration space into a latent space, which is
entirely collision-free. This allows planning to be performed
directly in the latent space, where additional constraints can
also be applied. The planned path is then mapped back to the
configuration space using the trained GAN.

DGNs - Energy-based Models (EBMs): EBMs’ ability to
implicitly represent un-normalized distributions makes them
capable of encoding datasets’ multimodality. Urain et al.
[42] utilized EBMs , trained on demonstration trajectories, to
generate prior distribution in a MAP inference framework to
solve the planning problem. Instead of relying on a single
monolithic prior, this framework employs a factored distribu-
tion to exploit composability to learn various aspects of the
planning problem. Geometric Fabrics Command Optimization
Problem (GFCOP) [309] uses Geometric Fabrics (GFs) [354]

to generate locally optimal motion trajectories and applies
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[369] over trajectory waypoints for reducing global planning
cost. An EBM is used to warm-start the CMA-ES global
optimization. The EBM is trained in a self-supervision manner,
where solutions from CMA-ES are continuously added to a
buffer, enabling a unified loop of learning and optimization.

DGNs - Diffusion Models: Diffusion models’ ability in
encoding multi-modal and high-dimensional data, as well as
stable training, made them a good choice for learning motion
policies from an expert dataset. One application of these
models in trajectory optimization is generating the initial seed
for the downstream optimization problem. DiffusionSeeder
(DiffSeeder) [310] also utilizes a conditional diffusion model,
conditioned on environment embedding, for seeding cuRobo
[138] motion optimization algorithm.

Motion Planning Diffusion (MPD) [19], [311] formulates
motion planning as an inference problem using a diffusion
model. In this framework, a temporal U-net [370] is trained
as a prior on expert demonstrations. Then, a task-conditioned
posterior is defined based on task-specific costs such as col-
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lision, self-collision, joint limits violations, enabling the sam-
pling of optimal trajectories. Language-guided Object Centric
3D Diffusion Policy (Lan-o3dp) [312] incorporates collision
avoidance as a constraint function applied to the end-effector
of the robotic manipulator. This constraint is used to guide the
generation of waypoints for the end-effector. Similarly, Nikken
et al. [313] use a conditional diffusion model to generate
trajectories for the end-effector of a robotic manipulator.
Instead of relying on expert demonstrations, the framework
generates training data through linear interpolation between
start and goal poses and conditions on obstacle information
during training.

Mobile Manipulation Diffuser (M2Diffuser) [314] learns
scene-conditioned goal-directed trajectory-level distributions
[371] using a diffusion process trained on expert demonstra-
tions for mobile manipulators. Then, a guided trajectory opti-
mization is performed for finding the optimal trajectory. Dur-
ing inference, the trajectory optimization problem is guided
by task objective energy functions (e.g., grasping, placement)
as well as planning constraint functions (e.g., smoothness
and collision avoidance). APEX [315] introduces an obstacle-
guided diffusion-based trajectory planner for dual-arm robotic
manipulators. This platform first transforms the planning prob-
lem into a latent space with a variational autoencoder, then
employs an obstacle-guidance classifier to perform planning
and replanning in dynamic environments.

Li et al. [316], [317] utilize a constraint-aware diffusion
model for trajectory optimization. In this framework, planning
constraints are incorporated into the training loss function
for accurate trajectory representation. Planning with Environ-
ment Representation, Sampling, and Trajectory Optimization
(PRESTO) [318] employs a conditional diffusion process to
generate initial trajectories for the downstream trajectory opti-
mization. The framework constructs an environmental embed-
ding by identifying key configurations, which are then input
into a Diffusion Transformer (DiT) [372] for the denoising
process. Planning constraints such as collision avoidance, and
smoothness are incorporated into the training loss to enhance
generalizability to new planning instances.

Ensemble-of-costs-guided Diffusion for Motion Planning
(EDMP) [320] runs multiple guided diffusion models in
parallel for trajectory generation. Each diffusion process is
guided by a specific cost function and corresponding guidance
hyperparameter. The use of an ensemble of collision costs
improves the planner’s generalization across different plan-
ning environments. Sharma et al. 321 propose a hierarchical
cascaded diffusion planner for global planning in complex
environments. The framework employs a high-level diffusion
model to generate a coarse plan from the start to the goal
configuration, and uses lower-level diffusion models to satisfy
local constraints.

Power et al. [319] propose a constraint-composable diffu-
sion model to generate initial trajectories for warm-starting
the Constrained Stein Variational Trajectory Optimization
(CSVTO) [113] algorithm. The model is a classifier-free
diffusion model trained on a dataset generated by CSVTO for
individual constraints. During inference, planning constraints
are composed to improve generalization to new planning

scenarios. Luo et al. [322] introduce a diffusion potential
field for trajectory generation, where EBMs are trained on
successful paths to encode promising regions of the planning
space. The gradients of learned energy functions are utilized
to guide the denoising process during trajectory sampling. In
this framework, different EBMs are associated with different
environments and can be combined to enable generalization
to out-of-distribution trajectory generation scenarios.

DGNs - Flow Matching (FM): Flow matching’s ability
to directly learn a time-dependent transport from a source
distribution to a target distribution makes it well-suited for
trajectory optimization through sampling. FlowMP [323] im-
proves upon MPD [19] by utilizing flow matching to learn
the trajectory prior. It extends the flow matching framework
by incorporating acceleration and jerk fields, enabling the
generation of smoother and more dynamically feasible tra-
jectories. Safe Flow Matching (SafeFlow) [324] combines
the flexibility of flow matching methods with control barrier
functions (CBFs) to introduce Flow Matching Barrier Func-
tions (FMBFs), which provide formal safety guarantees for
the generated trajectories. FMBFs incorporate dynamic control
inputs as a regularization term to guide the flow toward the safe
manifold (i.e., collision-free planning space). Tian et al. [325]
Leverages a flow matching framework to learn the planning
distribution of feasible motion plans to warm-start cuRobo
[138] for efficient motion planning.

E. Collision and Proximity Querying
Collision checking is the main bottleneck in motion plan-

ning algorithms, accounting for up to 90% of the computa-
tion time [373]. Deep neural networks have been utilized as
proxy collision checkers to mitigate this limitation. Table XV
provides an overview of the state-of-the-art of utilizing deep
learning for improving collision checking.

Multi-Layer Perceptrons (MLPs): One line of research has
used MLP frameworks for binary collision checking. Ichter
et al. [255] employ an MLP-based binary collision checker
within a sampling-based planning framework. Trained on data
generated by a classical collision checker, the model acts as a
binary classifier that takes consecutive states and a workspace
embedding as input to determine whether the path between
the two states is in collision.

Liu et al. [256] propose an MLP-based framework for
binary self-collision detection in redundant manipulators. The
network is trained on randomly sampled configurations labeled
with their collision status and, during inference, predicts the
probability of a given configuration being in self-collision. Ad-
ditionally, Self-imitation Learning by Planning Plus (SLIP+)
[257] trains a deep neural network to assess the collision
probability of a given robot configuration. This network takes
the robot’s configuration and the workspace embedding as
input and outputs the collision probability of the state. Also,
Krawczyk et al. [258] utilize an MLP-based framework to pre-
dict the self-collision status of a mobile manipulator. Trained
on data generated by the Flexible Collision Library (FCL)
[147], the model takes the mobile manipulator configuration
as input and outputs its collision status.
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TABLE XV: Overview of the state-of-the-art of deep learning for improving collision checking, including the metrics reported
relative to evaluated benchmark methods, and each approach’s primary contribution to robotic manipulator motion planning.

Paper Benchmarks & Metrics Contributions
T [s] ↓ C ↓ S [%] ↑

SLIP+∗

[257]
0.13 - 96 • Utilizes an MLP framework to determine the collision status

of robotic configurations.
1.02 (PRM) - 77 (PRM)

Krawczyk
et al. [258]

0.16 ms - - • Utilizes an MLP framework to determine the collision status
of robotic configurations.

0.31 ms (FCL [147]) - -
CN-RRT∗

[262]
2.0 #V: 964 97 • Utilizes an MLP framework to determine the separation

distance between the manipulator and the surrounding environment.
2.7 (GJK-RRT [141]) #V: 1214 (GJK-RRT

[141])
95.2 (GJK-RRT [141])

SCN [12]
0.01 ms - 93.2 • Utilizes 3D CNN to process workspace point cloud.

• Processes target object through PointNet++ [227].
0.49 ms (FCL [147]) - 75.4 (FCL [147])

CabiNet [275]
6.41 µs - 89 • Improves upon SceneCollisionNet [12] by considering diverse

workspaces.
7.03 µs (SCN [12]) - 69.9 (SCN [12])

GraphDistNet
[9]

3.2 - 70 • utilizes two graphs to encode the geometrical relation between
the manipulator and workspace obstacles.

1.9 (ClearanceNet
[262])

- 30 (ClearanceNet
[262])

GDN-R [22]
0.18 - - • utilizes Gumbel top-k relaxation to identify highly probable

interconnections between graph geometries.
0.38 (GraphDistNet

[9])
- -

PairwiseNet
[288]

- - 99 • Focuses on pairwise collision distance estimation.
• Utilizes DGCNN [374] for encoding the point cloud of objects.

- - 96 (ClearanceNet
[262])

DistFormer
[328]

31458 ms - 99.1 • Utilizes bounding sequence to retain geometrical properties.
• Leverages transformers to estimate distance to collision.

14797.2 ms
(GraphDistNet [9])

- 97.76 (GraphDistNet
[9])

CompositeSDF∗

[337]
4.78 - - • Utilizes MLP frameworks to learn an SDF network for

each link.
241 (GJK-RRT [141]) - -

SE3NN
[342]

0.189 - 90 • Utilizes a link SE(3) representation for planning embedding.
• Leverages continual learning to handle dynamic environments.

0.148 (ClearanceNet
[262])

- 73 (ClearanceNet
[262])

Note: Please note that ∗ indicates that the collision checking framework is embedded within a planning algorithm for benchmark comparison. “T ” denotes
planning time for rows marked with ∗, and average collision query time for the others, “C” denotes planning cost, and “S” refers to success rate (Section
II-C). “↓” indicates lower is better, and “↑” indicates higher is better. “#V” indicates the number of steps the planner explores on constraint manifolds to plan.

Tran et al. [259] integrated a contractive auto-encoder
(CAE) with an MLP to assess the collision status (i.e.,
collision-free or in-collision) of the sampled configurations
in sampling-based motion planning frameworks. The CAE
encodes the robot task space, and the output, along with a robot
configuration, is fed into the MLP to determine the collision
status of the configuration. DeepCollide [260] employs an
MLP-based structure combined with a forward kinematics
kernel to determine the collision status of a robotic manip-
ulator. This framework takes joint angles as input and outputs
a collision score, enabling efficient evaluation of potential
collisions.

MLPs also have been utilized to determine the collision
distance for collision and self-collision queries [261]. Clear-
anceNet (CN) [262] employs an MLP framework to accurately
predict the minimum separation distance between a manip-
ulator and surrounding obstacles. The model takes as input
an environment embedding and the manipulator pose, and
is trained on data generated using the GJK algorithm [141].
By leveraging the fast inference capabilities of MLPs, Clear-

anceNet facilitates batch collision checking, which signifi-
cantly improves planning speed by reducing the computational
complexity traditionally associated with geometrical collision
checking. However, since it uses point cloud representations of
obstacles, ClearanceNet faces challenges in accurately estimat-
ing distances for non-convex geometries and exhibits limited
generalization to unseen environments.

Liu et al. [263] introduced an MLP-based hierarchical self-
collision detection method consisting of a classifier and a re-
gressor designed for binary collision detection and estimating
the distance-to-collision for collision-free configurations. To
ensure the accuracy of the predictions, a robust geometric
collision detector is used to double-check collision-free states
when the distance to collision falls below a pre-defined thresh-
old.

Convolutional Neural Networks (CNNs): CNNs are well-
suited for collision checking over point clouds due to their
ability to encode the local and global structures of 3D scenes.
SceneCollisionNet (SCN) [12] is a framework designed for
real-time collision checking between two point clouds - the
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Fig. 10: Data representation and training objectives of neural motion planners for robotic manipulators. The left column
illustrates the input and output modalities (data representation) and the right column demonstrates the corresponding loss
function (training objective) for training and deploying neural motion planners. Classical motion planners such as cuRobo
[138] and planners from OMPL [375], along with collision checkers from FCL [147], are mainly used to generate oracle
datasets for training neural motion planners.

manipulator and workspace within a motion planning context
- even under partial observability. The workspace is voxelized,
and a shared MLP encodes the latent features within each
voxel. These voxel-wise representations are then processed
through 3D convolutional layers to learn an implicit 3D
embedding of the workspace. Additionally, the target object
is encoded using the set abstraction layer of PointNet++
[227], enabling the downstream MLP-based binary classifier to
perform collision checking between the workspace embedding
and the target object. CabiNet [275] improves upon SceneCol-
lisionNet capabilities to scale and generalize to various clutter
environments. This is achieved by augmenting the workplaces
with various common objects, such as shelves and cabinets.

Graph Neural Networks (GNNs): GNNs’ scalability and
generalizability are utilized for collision querying in plan-
ning problems. GraphDistNet [9] aims to encode geometri-
cal and topological relationships between a manipulator and
workspace obstacles to estimate both collision distance and
collision gradients. The framework constructs two graphs to
encode the manipulator and the workspace and employs Graph
Attention Networks [376] to encode interactions between
them. Trained on data generated with FCL [147], GraphDis-
tNet enables accurate distance and gradient estimation and
generalizes to unseen workspaces without requiring retraining.
However, the cost of message passing in GraphDistNet is
proportional to the graph size, which can impede its appli-

cation to 3D complex geometries. To address this, GDN-R
[22] with layer-wise probabilistic graph rewiring is proposed
for distance-to-collision estimation, utilizing Gumbel top-k
relaxation [377] to identify high probable interconnections
between graph geometries, thereby, increasing connectivity
between graphed objects. The input to GDN-R consists of
a graphed representation of workspace geometries, which
undergo iterative message passing to produce updated embed-
dings.

PairwiseNet [288] focuses on estimating pairwise collision
distance, instead of focusing of global collision distance. This
framework employs EdgeConv layers from Dynamic Graph
Convolutional Neural Networks (DGCNN) [374] to encode
the point-cloud of workspace shape geometries into shape
feature vectors. Subsequently, a fully connected neural net-
work processes these vectors of paired geometries to determine
the minimum distance between them. Then the minimum of
these pairwise distances will be treated as the global collision
distance. Thanks to the pairwise collision-distance estimation,
this framework easily generalizes to a workspace with new but
similarly shaped geometries.

Transformers: Transformers, known for their ability to learn
long-horizon dependencies, have also been utilized for col-
lision querying in mnipulator motion planning. DistFormer
[328] is a distance-to-collision estimator that leverages the
attention mechanism. Trained on a dataset generated by FCL
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TABLE XVI: A compact and concise overview of state-of-the-art literature that leverages various deep learning frameworks to
improve various components of classical planning algorithms for robotic manipulator motion planning. less than 5 papers ,
5 ∼ 10 papers , more than 10 papers .

E2E Planning U-SBMP C-SBMP TO Collision Checking
Sampling Steering

MLPs [240] [20], [241]–[247] [10], [248]–[250] [251]–[253] [5], [8], [254] [255]–[263]
CNNs [6], [264]–[269] [270]–[274] - - - [12], [275]
PC-Nets [1], [2], [276]–[278] - - - - -
RNNs [21] [279], [280] - - - -
GNNs - [281]–[287] - - - [9], [22], [288]

DGMs

VAEs [289], [290] [3], [255], [291]–[303] - [304], [305] [11] -

GANs - - - [7], [306], [307] [308] -

NFs - [4] - - - -

EBMs - - - - [42], [309] -

DMs - - - - [19], [310]–[322] -

FM - - - - [323]–[325] -
Transformers - [326], [327] - - - [328]
Foundation Models [329]–[332] - - - - -
Neural SDFs - - - - - [333]–[349]

Note: “E2E Planning” denotes end-to-end planning, “SBMP” denotes unconstrained sampling-based motion planning algorithms, “C-SBMP” denotes
constrained sampling-based motion planning algorithms, and “TO” denotes trajectory optimization algorithms.

[147], this framework utilizes bounding sequences to retain
the shape of the manipulator and obstacles, employing a self-
attention mechanism to transform these bounding sequences
into feature sequences. A cross-attention module then fuses the
feature sequences of the manipulator and obstacles, ensuring
that the manipulator is implicitly aware of the obstacle’s
locations. The augmented feature sequence of the manipulator
is ultimately used to estimate the collision distance in this
framework.

Large Language Models (LLMs): LLMs can be used to
encode the workspace of a robotic manipulator by generating
a voxel value map, which can serve as input for downstream
collision checking algorithms. VoxPoser [378] utilizes LLMs
to generate a 3D voxel value map based on task descriptions.
It then applies a greedy search over a collision avoidance map
to identify collision-free end-effector positions.

Neural SDFs: Neural SDFs learn a continuous signed distance
function using a neural network, which can be integrated into
motion planning algorithms for robotic manipulators. Neural
Joint Signed Distance Field (Neural JSDF) [333]–[335] is an
MLP-based implicit signed distance function to estimate the
distance between robot links to any point in the workspace.
The network is trained on a dataset containing both collision-
free and in-collision samples generated randomly. The pro-
posed network provides a smooth and differentiable distance
field that can be used as a collision constraint in optimization-
based trajectory planning algorithms. Neural JSDF implicitly
learns the manipulator’s kinematics, which leads to the accu-
mulation of error along the forward kinematics chain. Regu-
larized Deep Sign Distance Field (ReDSDF) [336] introduces
a neural signed distance function for articulated objects, taking
robot configuration and a 3D point in the workspace as input
to the signed distance, which is then used to compute the

repulsive velocities in motion planning.
Composite SDF [337] is a neural signed distance function

for predicting the minimum distance between an articulated
robot and any 3D point in the workspace. Instead of learning
an SDF for the whole body of manipulator, this frame-
work learns individual SDF networks for each robot link
to handle the complexity of high-dimensional configuration
spaces. Composite SDF utilizes the Open3D library [379] to
sample on/near manipulator meshes for training the proposed
framework. Zhao et al. [338] enhance the Composite SDF
framework by incorporating the gradient of the distance func-
tion, enabling its integration into optimization-based trajectory
planning algorithms. The composite neural SDF frameworks
need to follow the kinematic chain step-by-step, which leads
to computational complexity. To address this issue, Robot
Neural Distance Function (RNDF) [339] incorporates the
manipulator’s forward kinematics chain implicitly within a
neural framework. The model includes a regression head for
each robot link, with each head conditioned on the others
based on the arm’s kinematic chain. This design reduces
the computational complexity of explicitly computing the
forward kinematics while also minimizing error accumulation
associated with implicit representation.

Quintero-Pena et al. [340] extend the Neural JSDF et al.
[334] to stochastic environments by learning a distribution
over signed distance function. An MLP-based framework is
utilized to learn and predict the mean and variance of the
stochastic neural signed distance function, capturing uncer-
tainty in distance estimation. Configuration Space Distance
Field (CDF) [341] directly measures the distance between
joint configurations and workspace obstacles in the configu-
ration space, where planning and control are performed. This
distance field preserves the Euclidean property and ensures a
unit-norm gradient, eliminating the need for repeated inverse
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kinematics computations to map between the workspace and
configuration space.

One major limitation of neural collision checkers is their
poor adaptability to minor workspace changes, such as the
addition of new obstacles or robots, which often necessitates
complete retraining. SE3NN [342] addresses this issue by
utilizing an active learning method to augment the dataset with
near-boundary configurations. Instead of using joint configu-
rations as input to the neural collision checker, the framework
adopts a redundant SE(3) representation of planning space
for effective collision checking. Markov Chain Monte Carlo
(MCMC) sampling [380] is then employed to continuously
sample boundary data for continuous training of the network.

Another approach to collision detection involves estimat-
ing the manipulator’s swept volume between start and goal
configurations. Deep neural networks have been widely used
to approximate the geometry of this swept volume, enabling
continuous collision checking. Baxter et al. [343] propose an
MLP-based framework that takes the start and goal config-
urations of a manipulator as input and outputs a voxel grid
representation of the swept volume. The V-REP simulation
framework [381] is used to generate training data by collecting
the robot’s swept volumes. This approach, however, results in
low spatial resolution and inherent discretization errors. To ad-
dress this issue, Lee et al [344]–[346] utilize a neural network
to approximate the boundary surfaces of the manipulator’s
swept volume. The framework employs a high fidelity neural
signed SDF [236] for surface reconstruction to represent the
manipulator’s boundary surface along the trajectory, enabling
accurate construction of the swept volume.

Reachability-based Signed Distance Functions (RDFs)
[347], an implicit neural representation, computes the dis-
tance between manipulator’s parameterized swept volume and
workspace objects. This framework utilizes a polynomial
zonotope-based representation of the robotic arm and box
obstacles to create the training dataset, and follows the network
structure of [236] as the implicit representation. Joho et al.
[348] propose a neural continuous implicit swept volume
representation that takes as input start and goal configurations
along with workspace query points, and outputs the signed
distance between the query points and the manipulator’s swept
volume. To enhance reliability, the neural collision checker is
interleaved with a geometric collision checker.

Comformalized Reachable Sets for Obstacle Avoidance
with Spheres (CROWS) [349] uses MLP-based frameworks
to model the swept volume of a robotic manipulator. One
network learns the centers and radii of Spherical Forward
Occupancy (FSO) [382] of the robotic manipulator, while
another provides the derivative of the SFO with respect to
the sphere centers. The SFO approximates the swept volume
of the robotic manipulator using a collection of spheres, and
this implicit representation is used as a collision constraint in
optimization-based trajectory planning.

VI. CHALLENGES AND FUTURE PERSPECTIVES

In this section, we explore the challenges of employing
deep learning frameworks for motion planning in robotic

manipulators, and explore future avenues to address some of
these challenges. Table XVI provides a guide for researchers
interested in using deep learning techniques for robotic ma-
nipulator motion planning. It classifies more than 100 research
papers published since 2018 according to motion planning
primitives and deep learning frameworks.

A. Generalizability

1) Challenges: While various deep learning frameworks
incorporate different types of inductive biases to handle data
not encountered during training, they often struggle to gener-
alize to out-of-distribution settings. This is because robot skills
are limited to the movement distribution learned from planning
data. This challenge is particularly pronounced in motion
planning for robotic manipulators, where small changes in the
workspace significantly alter the planning problem [34]. The
poor scalability and generalizability of neural motion planners
stem from the fact that motion planning-specific datasets are
scarce.

2) Possible Method 1: LLMs as Generalist Motion Plan-
ners: LLMs possess a vast actionable knowledge that can
be leveraged to plan motions for robotic manipulators [26].
As shown in Figure 11-(a), these models can be prompted
for zero-shot or few-shot motion planning for robotic ma-
nipulators. Utilizing LLMs for end-to-end motion planning
is challenging because these models are not well-suited for
encoding spatiotemporal dependencies within motion planning
problems, as they are not trained on physical interaction
datasets [330].

A more practical application of LLMs in robotic manipu-
lator motion planning is their potential to improve specific
algorithmic primitives of classical planning algorithms. In
sampling-based planning algorithms, LLMs with high temper-
ature settings, conditioned on language instructions and visual
representations of the workspace, can function as informed
samplers. Moreover, these models can be instructed to learn
and encode the constraint manifold, enabling constraint-aware
informed sampling.

In optimization-based planning algorithms, LLMs can be
used to warm-start the optimization process based on language
instructions and visual representations of the workspace. For
collision checking, these models can generate the workspace
value map from visual and language inputs to enable real-time
collision checking [378].

One limitation of using LLMs within motion planning al-
gorithms for real-time motion planning is their high inference
time, as these models contain millions of parameters [383].
To mitigate this, utilizing powerful computational resources
such as dedicated GPUs and TPUs can significantly reduce
inference time.

3) Possible Method 2: Large-scale Synthetic Data Gener-
ation: The generalizability of neural motion planners can be
improved with large-scale planning datasets. Also, the method-
ology of robot foundation models [237] can be leveraged to
fine-tuning LLMs on this large-scale, planning-specific dataset.

State-of-the-art high-fidelity physics-based simulators
[385]–[387] can be leveraged to generate datasets for motion
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Fig. 11: Possible methods to improve the generalizability of
neural motion planners: (a) LLMs for end-to-end planning
[330]. (b) Large-scale synthetic dataset generation [384].

planning. However, a major limitation is the lack of variability
and realism in the simulated planning workspaces. There are
two possible methods to address this limitation: procedural
workspace generation and generative AI-based workspace
generation.

Procedural workspace generation methods programmati-
cally generate cluttered workspaces for motion planning.
MotionBenchMaker [384] generates diverse workspaces by
procedurally generating assets with URDF sampling (Figure
11-(b)). These assets can be combined in a physics-based
simulator to generate various workspaces. Classical motion
planners from the Open Motion Planning Library (OMPL)
[375] or advanced planners such as cuRobo [138] can then
be leveraged to generate motion planning datasets. However,
MotionBenchMaker produces simple workspaces with only
one major asset and large gaps between smaller ones. As
a result, the generated workspaces are not realistic, and the
trained neural motion planner struggle to plan in real-world
settings.

Neural MP [2] addresses MotionBenchmaker’s limitations
by generating more realistic and cluttered workspaces for
data collection. This framework utilizes procedural assent
generation and sampled everyday objects from a 3D object
dataset [388] to create diverse workspaces. Then, a classical
planning algorithm from OMPL is utilized to collect plan-
ning data to train a generalist neural motion planner. The
resulting motion planner is capable of planning within out-of-
distribution scenarios, enhancing adaptability and robustness
in robotic manipulator motion planning. However, randomly
creating workspaces is not trivial, and the resulting workspaces
may not necessarily resemble real-world scenarios.

Generative AI-based workspace generation can leverage
advanced AI tools to generate realistic and diverse workspaces
for data collection. These methods can utilize generative
methods (e.g., text-to-3D [390], 2D-to-3D [391]), or advanced
NeRFs [230] to generate articulated 3D assets from language
instructions or images for workspace generation. Classical
motion planners can then be utilized within these workspaces

to generate a large-scale dataset. However, Current generative
models struggle to generate a wide variety of articulated 3D
assets with diverse configurations and articulations, which
limits their effectiveness for training generalist neural motion
planners. Existing 3D object datasets, such as Objaverse [388]
and PartNet-Mobility [392], can also be used to augment
generative AI workspace generation methods by directly pro-
viding articulated objects. However, the diversity of articulated
objects in these datasets is limited, making them insufficient
for training generalist neural motion planners.

One promising direction is to combine procedural
workspace generation with generative AI methods to create
realistic and diverse workspaces to collect large-scale datasets
for training generalist neural motion planners.

B. Safety

1) Challenges: Neural motion planners can unlock the
potential of robotic manipulators for deployment in vast real-
world settings and applications. However, these planners do
not provide completeness or optimality guarantees, which may
result in planning failures [393]. On the other hand, although
struggling with generalizability and scalability, classical plan-
ning algorithms do offer a certain level of completeness (e.g.,
probabilistic completeness of sampling-based algorithms) and
theoretical optimality. Table XVII provides the advantages and
limitations of neural motion planners compared to classical
planning algorithms.

TABLE XVII: A qualitative comparison between neural mo-
tion planning and classical motion planning for robotic ma-
nipulators.

Planners Advantages Limitations
SBMP • Probabilistic completeness • Non-smooth paths
Global
Optimization

• Smooth paths.
• Incorporates equality and
non-equality constraints

• Susceptible to local
minima
• Computationally complex

Neural
Planning

• Fast inference
• Encoding high-dimensional,
complex distributions
• Leverages past experience
for new problems

• Data scarcity
• Safety and reliability

Note: “SBMP” denotes sampling-based motion planning, and “Neural Plan-
ning” refers to methods that leverage deep learning methods for planning.

Additionally, task-specific safety concerns require careful
consideration. For example, in collaborative environments,
the neural motion planner must always prioritize avoiding
collisions with human operators to ensure safe operation.

Existing research on motion planning for robotic manip-
ulators often focuses on improving efficiency and success
rates using deep learning frameworks. However, many of these
methods overlook critical safety aspects, even though planned
trajectories must satisfy specific constraints to ensure safe
operation of the robotic manipulator [181].

For instance, one important safety challenge arises when
a robotic manipulator encounters a singularity configuration.
At such configurations, the geometric Jacobian becomes ill-
conditioned and loses rank, which results in the loss of one
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Fig. 12: Possible methods to enhance the safety of neural motion planners: (a) Constraint-aware neural motion planning [241].
(b) Safety filters [324]. (c) Digital twins [389].

or more degrees of freedom. As a result, the end-effector
movement can become unpredictable and uncontrollable [394].
However, most state-of-the-art neural motion planners over-
look the singularity issue and instead focus on generalization
within the workspace.

2) Possible Method 1: Constraint-aware Neural Motion
Planning: Constraint-aware motion planners combine the
strengths of classical and neural motion planners for safe
deployment in real-world settings [241]. These planners re-
tain the completeness and optimality guarantees of classical
algorithms for safe performance. At the same time, they can
leverage the semantic reasoning and scene understanding capa-
bilities of neural networks and LLMs for better generalization
to domain-specific, dynamic planning scenarios (Figure 12-
(a)).

For sampling-based planning algorithms, combining their
inherent probabilistic completeness [241] and constraint-aware
sampling [252] with an implicit neural-informed sampler can
enhance both the safety and adaptability of neural motion
planners (Figure 12-(a)). Global trajectory optimization meth-
ods can integrate the safety and flexibility of optimization-
based planning with the expressive power of neural networks.
In these algorithms, deep generative models can capture the
multi-modal distribution of the planning dataset to efficiently
warm-start the optimization algorithm, while safety constraints
can be incorporated as soft constraints within the optimization
framework [113]. For collision checking, fast neural collision
checkers can be combined with safe geometric collision check-
ers for safe and efficient collision checking.

Regarding singularity, one possible direction is to treat
singularity as a planning cost. Prior work has mitigated the
singularity through Jacobian matrix processing techniques like
Damped Least Squares (DLS) [395] and its variants [396], as
well as maximizing manipulability indices [397]. Manavalan
et al. [398] utilize kinesthetic task demonstrations to lean
the manipulator’s manipulability index, given that constraints
are state-dependent, and the manipulability varies during task
execution. For neural motion planners, one possible approach
is to identify workspace areas with low manipulability mea-
sures and guide the planner to avoid these areas. Singularity-
related costs can also be incorporated into learning-based
trajectory optimization methods to keep trajectories away from

singular configurations. However, integrating these methods
with neural motion planners for deployment in everyday un-
structured environments remains challenging. Further research
is necessary to combine learning-based singularity detection
with neural motion planners to ensure safe operation near
singular configurations.

3) Possible Method 2: Safety Filters: The generalizability
and scalability of neural motion planners can be combined
with model-based safety filters to avoid catastrophic failures
[399]. Safety filters monitor the operation of a robotic system
and intervene when necessary [400].

One class of safety filters is control barrier functions
(CBFs), which provide smooth intervention through real-time
control optimization [401]. These methods generate a safe
control signal by modifying the original task signal to satisfy
the safety filter’s required decrease rate. CBFs [401] can be ap-
plied during neural path planning and/or execution to enforce
safety constraints (Figure 12-(b)) [324]. However, designing
valid CBFs for neural motion planners is challenging and
requires careful consideration. Moreover, these filters mainly
address geometric constraints, and additional work is needed to
translate semantically defined constraints into analytical forms
that can be handled by such methods [402].

Another type of safety filter is trajectory optimization at
runtime. For example, Model Predictive Shielding (MPS)
evaluates the task control within a prediction horizon 403. If
the task control satisfies the safety constraints, it is executed;
otherwise, a fallback policy is executed. This approach can
be combined with neural motion planners to locally enforce
task-specific trajectory constraints. However, MPS requires a
complete dynamic model of the robotic manipulator and well-
defined safety constraints, which are often difficult to obtain
for real-world applications.

4) Possible Method 3: Digital Twins: High-fidelity, cost-
effective simulation environments are widely used for training
and optimizing embodied AI systems, including neural motion
planners. However, the sim-to-real gap limits the transfer of
models from simulation to the real world due to the complexity
and unpredictability of real-world environments [404]. Digital
twins can bridge this gap by providing real-time simulations
that closely mirror their physical counterparts [389].

The ability of digital twins to ensure consistency and
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synchronization has advanced research in waste management
[405] and human-robot collaboration [406]. These models
enable real-time monitoring, optimization, and prediction, fa-
cilitating a seamless connection between physical and virtual
environments [407]. High-fidelity, task-specific digital twins
have the potential to improve the safety of neural motion
planners by allowing motion planning and execution to be
tested in the digital twin before deployment in the real
world (Figure 12-(c)). However, the underlying sim-to-real gap
within physics engines still limits the reliability of digital twins
for providing safety guarantees.

VII. DOMAIN-SPECIFIC CHALLENGES AND POTENTIALS

Deep learning methods hold significant promise to advance
robotic manipulator planning in complex, domain-specific
applications. We outline the benefits and potential risks of
applying neural motion planners for robotic manipulators
across various domains.

A. Healthcare

State-of-the-art surgical [408]–[412] and assistive robots
[413]–[420] have achieved limited, task-specific autonomy.
These systems may reduce operating time and standardize
technique, potentially lowering costs and widening access, but
robust generalization to complex, variable clinical conditions
remains challenging. As shown in Figure 13-(a), most surgical
robots still operate in master–slave teleoperation, where a
surgeon commands instruments via a console or joysticks
[421], [422].

Early surgical path planning methods relied on trajectory
optimizers and visual servoing under surgeon supervision,
which are brittle to deformable anatomy, occlusions, and
nonstationary scenes [423]. Deep learning re-frames planning
as closed-loop visuo-motor proposal generation from multi-
modal observations (endoscope video, robotic proprioception,
and force/tactile feedback) learned via imitation, (inverse)
RL, and sequence modeling [424], [425]. However, motion
planning for surgical robots is challenging due to the com-
plexity of surgical environments. These environments exhibit
high variability across patients, continuous changes during
the procedure, a limited field of view (FoV), and partial
observability due to occlusions. In addition, strict safety and
precision requirements further complicate the development and
deployment of motion planning algorithms in surgical settings
[426], [427].

Recently, surgical foundation models frame planning as
a closed-loop trajectory proposal conditioned on intraoper-
ative perception. Hierarchical Surgical Transformer (SRT-H)
is a hierarchical structure developed for autonomous ex vivo
cholecystectomy [426]. This framework couples a language-
conditioned high-level policy that issues intent instructions
with a low-level controller that generates end-effector motions.
The high-level policy also provides correction instructions to
adjust the surgical process if needed. Experimental results
show a 100% success rate across eight unseen surgical sce-
narios, demonstrating the potential for deploying autonomous
surgical systems in clinical settings.

Fig. 13: Robot-assisted surgery. (a) Asensus Senhance surgical
robot platform [421]. (b) Autonomous robot for autonomous
laparoscopic soft tissue anastomosis [425]. (c) Robot-assisted
surgery robot transformer (RT-RAS) control loop [424].

SRT-H robotic system [426] was evaluated in ex vivo set-
tings, and additional considerations and risk mitigation strate-
gies are needed for safe deployment within in vivo surgical
environments. Risk avoidance methods such as conservative
Q-learning [428] and conformal methods [429] can provide
the robot with confidence estimates when performing out-
of-distribution tasks. Figure 13-(c) demonstrates an example
of incorporating a risk avoidance system for surgical robots.
Patient-specific digital twins can facilitate in vivo deployment
by validating surgical trajectories on preoperative anatomy and
stress-testing failure cases before real-world execution [430].

Robot-assisted surgical frameworks [424], [425] like SRT-
H can benefit from fast, collision-aware neural motion plan-
ners that propose smooth, collision-free tool paths to achieve
smoother task execution and establish fully autonomous surgi-
cal robots for end-to-end procedures. Integrating safety filters
into the neural motion planner [324] helps ensure safe tool
movements, preventing accidental collisions with or damage
to vital organs.

Surgical foundation models combined with neural motion
planners necessitate large-scale surgical datasets, which are
challenging to obtain due to the scarcity and variability of
demonstrations. Moreover, they must undergo rigorous safety
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certification to comply with stringent medical regulations and
clinical protocols before deployment in real-world settings.

Field of view (FoV) limitations represent a fundamental bar-
rier to robotic-assisted surgery (RAS) automation [431], [432].
These limitations impede both large-scale data collection for
training generalist neural motion planners and accurate colli-
sion checking during deployment. Clinical evidence demon-
strates that surgeons operate under suboptimal visual condi-
tions for approximately 40% of minimally invasive procedures,
contributing to nearly 20% of surgical complications [433],
while impaired vision affects 58% of robotic surgery duration
[432]. These FoV constraints stem from multiple sources:
trocar diameter restrictions limiting camera dimensions, rapid
scene changes from camera movements, lighting fluctuations,
instrument occlusion, and organ deformations [427], [434].

Recently, specialized frameworks have been developed for
specific interventions with critical FoV challenges. SafeRPlan
[435] implements Safe Deep Reinforcement Learning for
robotic spine surgery, integrating neural networks pre-trained
on preoperative images with uncertainty-aware safety filters
to encode anatomical knowledge. For laparoscopic procedures,
Iyama et al. [436] developed a neural network combining point
cloud CNN with DRL for autonomous forceps positioning,
directly optimizing tissue surface planarity and visibility to
address FoV limitations. In neurosurgery, Segato et al. [437]
introduced an Inverse Reinforcement Learning framework for
steerable needle navigation in keyhole procedures, learning
from expert demonstrations to adapt to dynamic tissue de-
formations in real-time, achieving exceptional precision with
sub-millimeter targeting errors and 0.02-second re-planning
capabilities while maintaining 100% success rates under chal-
lenging deformable conditions.

Recent advances in neural networks have demonstrated
significant progress in addressing FoV limitations. Neural
radiance fields (NeRF)-based approaches have emerged as
particularly promising solutions. Qin et al. [438] developed
a NeRF-driven network that reconstructs highly realistic en-
doscopic scenes from multi-view images. To address the
impracticality of extensive multi-view image collection during
surgery, Neri et al. [439] proposed a method enabling NeRF
reconstruction from single intraoperative images combined
with preoperative data, employing neural style transfer for
efficient alignment and training. These approaches have the
potential to be integrated into the neural motion planner’s
pipeline for efficient training and reliable deployment.

B. Re-manufacturing

Re-manufacturing involves full disassembly and reassem-
bly of end-of-life (EOL) products to enable their sustain-
able recovery [440]–[442]. Human-robot collaborative (HRC)
disassembly combines the robot’s strength and the human’s
dexterity to enable flexible and efficient disassembly of EOL
products [443]–[445].

HRC disassembly requires dynamic and collision-free col-
laboration, which relies on efficient human motion prediction
and reliable motion planning for the robotic manipulator
[446]. As demonstrated in Figure 14, ensuring collision-free

collaboration is challenging due to the proximity of human
operators and the complexity of the disassembly environment.
Deep learning methods, have the potential to enhance the
adaptability and flexibility of HRC disassembly by offering
fast inference, ease of implementation, and strong generaliza-
tion capabilities [447].

Fig. 14: Human-robot intelligent collaboration for disassem-
bly. (a) Desktop disassembly. (b) Electric-vehicle battery dis-
assembly [447].

Deep learning methods have enhanced the HRC disassembly
process by facilitating reliable human motion prediction [448]
and efficient motion planning for robotic manipulators [446].
Regarding human motion prediction, sequence modeling net-
work architectures such as recurrent neural networks (RNNs)
have been used to capture temporal patterns in human motion
for efficient prediction [448]. Regarding reliable motion plan-
ning, various deep learning methods have been utilized for
collision-free and precise manipulator motion planning [281].
More specifically, constraint-aware neural motion planners,
combined with safety filters, have the potential to gener-
ate optimal, collision-free, and safe trajectories for robotic
manipulators in HRC disassembly settings. These planners
are designed to efficiently handle planning constraints [251],
which can be deployed to handle disassembly constraints, such
as managing fragile or hazardous components, and facilitate
fast planning in dynamic environments. Predicted human mo-
tion could also be incorporated as an additional constraint
to ensure safe collaboration. Integrating safety filters [400]
with these planners prevents collision with the human operator
and guarantees safety. Validating the disassembly process in
a high-fidelity digital twin further ensures safe and efficient
planning execution within HRC scenarios [449].

Large-scale re-manufacturing still relies on manual labor,
while intelligent disassembly remains limited to laboratory
environments [446]. Deploying neural motion planners in HRC
disassembly settings involves several challenges. Firstly, large-
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scale datasets and extensive training are required. However,
EOL products lack standardized designs, and exhibit high
structural variability, and have uncertain physical conditions,
which complicates large-scale data collection. Moreover, task-
and operator-specific safety filters are essential for safe HRC
disassembly. However, the complexity of workspaces and
variability among human operators make it difficult to design
and integrate such safety filters into neural motion planners.

C. Other Domains

Manufacturing: The deployment of robotic manipulators in
existing manufacturing environments is predominantly opti-
mized for rigid processes [177], [450]–[452]. Deep learning
and neural motion planners have huge potential for flexible
manufacturing, which offers greater adaptability for various
assembly tasks and products. However, their widespread adop-
tion is hindered by the requirement for large-scale, real-world
data collection and the stringent safety-certification procedures
necessary for human-robot collaboration. Moreover, the ability
to generalize learned motion policies to novel, unseen manu-
facturing tasks remains an open challenge.

Agriculture: Precision agriculture still relies heavily on man-
ual labor [453]. Deploying robotic manipulators for agriculture
automation requires adaptability to environmental variations,
coordination under limited connectivity, and the ability for
crop-specific harvesting. Deep learning and neural motion
planners offer the potential to provide end-to-end policy
networks for effective harvesting in cluttered environments.
However, guaranteeing the robustness of these methods is
challenging due to the less-structured nature of agricultural
environments.

Construction: Construction environments are typically un-
structured and constantly changing [454]. Deploying robotic
manipulators in such environments necessitates real-time re-
planning and strict adherence to safety regulations. Neural mo-
tion planners can enable robotic manipulators to autonomously
adapt to dynamic conditions, navigate cluttered workspaces,
avoid obstacles such as scaffolding, and coordinate with other
agents such as humans and cranes. However, their limitations
include the scarcity of labeled on-site data, the need for real-
time domain adaptation as conditions evolve, and the difficulty
of certifying safety when heavy loads or human workers are
involved.

Warehouse: Warehouse robotics is essential for logistics and
working alongside human operators [455]. Current warehouses
typically utilize conveyors and sorting machines to han-
dle various packages. Deploying robotic manipulators within
warehouses requires high mobility, manipulability, and ef-
fective human collaboration. Moreover, they often need to
operate in highly constrained, confined spaces. To address
these challenges, neural motion planners have the potential to
generate real-time, collision-free paths to enable fast pick-and-
place operations within these environments. However, these
planners need to explicitly consider kinodynamic constraints
and smoothness for effective deployment. Ensuring operational

safety and collecting large-scale, domain-specific data are also
critical for the widespread deployment of warehouse robotics.

The deployment of neural motion planners in real-world en-
vironments remains limited. Most existing studies demonstrate
these methods primarily in simulation or controlled laboratory
settings, with practical validation and widespread real-world
adoption still underdeveloped.

VIII. CONCLUSIONS

Through a comprehensive examination of state of the art,
we analyzed how various deep learning architectures have
improved classical motion planning algorithms for robotic
manipulators. In this examination:

• We delved into classical planning algorithms to identify
their core components, and we discussed how various
deep learning characteristics, such as fast inference, in-
ductive biases, parallelization, and multi-modal feature
encoding capabilities, have improved these components,
and provided a systematic map from various deep learn-
ing frameworks to specific algorithmic primitives of clas-
sical motion planning algorithms.

• We also outlined the essential considerations towards
developing generalist neural motion planners capable
of end-to-end planning and robust deployment within
unstructured real-world environments.

In addition to highlighting the improvements that deep
learning methods lend to motion planning algorithms, we also
identified challenges and considerations that need to be ad-
dressed before these frameworks can be safely deployed within
a broad range of unstructured real-world environments. Partic-
ularly, we emphasized the need for standardized benchmarks,
large-scale planning datasets, explicit handling of safety con-
straints, generalization to out-of-distribution scenarios, and
robustness to planning uncertainties for reliable deployment
within unstructured real-world environments. Additionally, we
discussed and emphasized how recent large-scale foundation
models can be established and leveraged to facilitate reaching
this goal.

This review aims to serve as a foundational resource for
researchers interested in exploring deep learning applications
in motion planning for robotic manipulators.
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